高斯-马尔可夫定理

✍ dations ◷ 2025-10-06 16:06:34 #数学定理,统计学

在统计学中,高斯-马尔可夫定理(Gauss-Markov Theorem)陈述的是:在线性回归模型中,如果误差满足零均值、同方差且互不相关,则回归系数的最佳线性无偏估计(BLUE, Best Linear unbiased estimator)就是普通最小二乘法估计。

对于简单(一元)线性回归模型,

其中 β 0 {\displaystyle \beta _{0}} β 1 {\displaystyle \beta _{1}} 是非随机但不能观测到的参数, x i {\displaystyle x_{i}} 是非随机且可观测到的一般变量, ε i {\displaystyle \varepsilon _{i}} 是不可观测的随机变量,或称为随机误差或噪音,因此 y i {\displaystyle y_{i}} 是可观测的随机变量。

高斯-马尔可夫定理的假设条件是:

则对 β 0 {\displaystyle \beta _{0}} β 1 {\displaystyle \beta _{1}} 的最佳线性无偏估计为,

对于多元线性回归模型,

使用矩阵形式,线性回归模型可简化记为 Y = X β + ε {\displaystyle \mathbf {Y} =\mathbf {X} {\boldsymbol {\beta }}+{\boldsymbol {\varepsilon }}} ,其中采用了以下记号:

Y = ( y 1 , y 2 , , y n ) T {\displaystyle \mathbf {Y} =(y_{1},y_{2},\dots ,y_{n})^{T}} (观测值向量,Vector of Responses),

X = ( x i j ) = {\displaystyle \mathbf {X} =(x_{ij})={\begin{bmatrix}1&x_{11}&x_{12}&\cdots &x_{1p}\\1&x_{21}&x_{22}&\cdots &x_{2p}\\\vdots &\vdots &\vdots &\ddots &\vdots \\1&x_{n1}&x_{n2}&\cdots &x_{np}\end{bmatrix}}} (设计矩阵,Design Matrix),

β = ( β 0 , β 1 , , β p ) T {\displaystyle {\boldsymbol {\beta }}=(\beta _{0},\beta _{1},\dots ,\beta _{p})^{T}} (参数向量,Vector of Parameters),

ε = ( ε 1 , ε 2 , , ε n ) T {\displaystyle {\boldsymbol {\varepsilon }}=(\varepsilon _{1},\varepsilon _{2},\dots ,\varepsilon _{n})^{T}} (随机误差向量,Vectors of Error)。

高斯-马尔可夫定理的假设条件是:

则对 β {\displaystyle {\boldsymbol {\beta }}} 的最佳线性无偏估计为

首先,注意的是这里数据是 Y {\displaystyle \mathbf {Y} } 而非 X {\displaystyle \mathbf {X} } ,我们希望找到 β {\displaystyle {\boldsymbol {\beta }}} 对于 Y {\displaystyle \mathbf {Y} } 的线性估计量,记作

其中 β ^ {\displaystyle {\hat {\boldsymbol {\beta }}}} M {\displaystyle \mathbf {M} } N {\displaystyle \mathbf {N} } Y {\displaystyle \mathbf {Y} } 分别是 ( p + 1 ) × 1 {\displaystyle (p+1)\times 1} ( p + 1 ) × 1 {\displaystyle (p+1)\times 1} ( p + 1 ) × n {\displaystyle (p+1)\times n} n × 1 {\displaystyle n\times 1} 矩阵。

根据零均值假设所得,

其次,我们同时限制寻找的估计量为无偏的估计量,即要求 E ( β ^ ) = β {\displaystyle {\rm {E}}\left({\hat {\boldsymbol {\beta }}}\right)={\boldsymbol {\beta }}} ,因此有

相关

  • 实习实习,是学生到企业、政府部门或其他组织等进行实践的一个过程,目的是为以后的工作做好准备。实习生通常是在校大学生,但是也有一些高中生或者研究生。实习为想要在各自领域获得
  • 烷化剂烷化剂(Alkylating agents,或烷基化剂)是一种有机化合物,能使烷基转移到其他分子上,此过程称为烷基化。烷化剂具有生物活性,因此可用来当作化学武器,如芥子气。一般也应用于炼油、
  • 伯克利音乐学院伯克利音乐学院(Berklee College of Music)是一所位于美国马萨诸塞州波士顿的独立音乐学院,建校于1945年。该校约有5,241名学生,是全世界规模最大且最顶尖的独立现代音乐学院,以
  • 威廉·贝特森威廉·贝特森(英语:William Bateson, 1861年8月8日-1926年2月8日),英国遗传学家,剑桥大学圣约翰学院研究人员。他是第一个使用遗传学一词来描述遗传和变异规律的人,并在1900年雨果
  • 国家复兴运动国家复兴运动(西班牙语:Movimiento Regeneración Nacional,缩写为Morena)是墨西哥的一个左翼政党。该党成立于2012年。该党的意识形态是卡德纳斯主义、左翼民族主义、改良主义
  • 台车线.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none
  • 返回舱返回舱是载人飞船的一个舱段,用于宇航员返回地面。
  • 便携式文档格式便携式文档格式(英语:Portable Document Format,缩写:PDF)是一种用独立于应用程序、硬件、操作系统的方式呈现文档的文件格式。每个PDF文件包含固定布局的平面文档的完整描述,包括
  • 限滑差速器限滑差速器(英文:Limited Slip Differential,缩写:LSD)是车用差速器的一种高级分类。普通差速器(或可称为开放式差速器)在在一侧车轮打滑或者离地的情况下,会把所有的驱动力传送至空
  • HUNUS娱乐HUNUS娱乐(韩语:후너스 엔터테인먼트,英语:Hunus Entertainment) 为韩国电影、电视剧制作公司、演艺经纪公司。Hunus Entertainment专辑纪录(朝鲜语:후너스 엔터테인먼트의 음반)