棱台

✍ dations ◷ 2025-10-07 22:13:43 #棱台
棱台是几何学中研究的一类多面体,指一个棱锥被平行于它的底面的一个平面所截后,截面与底面之间的几何形体。截面也称为棱台的上底面,原来棱锥的底面称为下底面。随着棱锥形状不同,棱台的称呼也不相同,依底面多边形而定,例如底面是正方形的棱台称为方棱台,底面为三角形的棱台称为三棱台,底面为五边形的棱台称为五棱台等等。棱台是平截头体的一类,也是更广义的拟柱体的一种。从棱锥的定义可以推知,一个以.mw-parser-output .serif{font-family:Times,serif}n边形为底面的棱台,一共有2n个顶点,n+2个面以及3n条边。棱锥的对偶多面体是双锥。棱锥的对称性取决于原来棱锥。如果原来的棱锥是正棱锥,那么棱台和正多边形有相同的对称结构(同构的对称群)。棱台的体积取决于两底面之间的距离(棱台的高),以及原来棱锥的体积。设 h {displaystyle h} 为棱台的高, S u {displaystyle S_{u}} 和 S d {displaystyle S_{d}} 为棱台的上下底面积, V {displaystyle V} 为棱台的体积。由于棱台是由一个平面截去棱锥的一部分(也就是和原来棱锥相似的一个小棱锥)得到,所以计算体积的时候,可以先算出原来棱锥的体积,再减去和它相似的小棱锥的体积。棱锥被平行于底面的平面所截时,截面的面积与底面面积的比,等于小棱锥和原棱锥的高的比的平方。假设原棱锥的高是 H {displaystyle H} ,那幺小棱锥的高是 H − h {displaystyle H-h} 。也就是说:所以:棱台的体积等于原棱锥体积减去小棱锥的体积:对于正棱锥,假设它的底面是正n边形,边长分别为a和b,高是h,那么底面积是: S u = n a 2 4 cot ⁡ π n , S u = n b 2 4 cot ⁡ π n . {displaystyle S_{u}={frac {na^{2}}{4}}cot {frac {pi }{n}},quad S_{u}={frac {nb^{2}}{4}}cot {frac {pi }{n}}.} 所以它的体积是:棱台的侧面展开图是由各个梯形侧面组成的,展开图的面积,就是各个侧面的面积之和,也就是原棱锥的侧面积减去小棱锥的侧面积Sc棱台的表面积等于棱台的侧面积Sc加上底面积S。假设各个梯形侧面的高是hi,底边的长度是ai和bi,那么棱锥的侧面积:三角柱 · 四角柱 · 五角柱 · 六角柱 · 七角柱 · 八角柱 · 九角柱 · ... · 无限角柱(双曲)三角反柱 · 四角反柱 · 五角反柱 · 六角反柱 · 七角反柱 · 八角反柱 · ... · 无限角反柱三角锥柱 · 四角锥柱 · 五角锥柱 · 六角锥柱 · 七角锥柱 · 八角锥柱 · ... · 无限角锥柱

相关

  • 重建时期美国重建时期(英语:Reconstruction Era)在美国历史上指1865年-1877年,当南方邦联与奴隶制度一并被摧毁时,试图解决南北战争遗留问题的时期。“重建”提出了南方分离各州如何重返联
  • 约翰·英索约翰·内维尔·英索(英语:John Nevil Insall;1930年-2000年)是英国籍的骨科医师。他是发展全膝关节置换术的先驱。他设计的四个全膝关节置换术系统大大地推进了该领域的发展,至今
  • 五碳糖戊糖(英语:Pentose),又称为五碳糖,是一种含有5个碳原子的单糖。在1号碳上有醛基的称为五碳醛糖(戊醛糖);2号碳上有酮基的称为五碳酮糖(戊酮糖)。戊醛糖有3个手性中心,因此可能有8种旋光
  • 欧亚经济共同体欧亚经济共同体(英语:Eurasian Economic Community,缩写EAEC或EurAsEC;俄语:Евразийское экономическое сообщество),起源于独立国家联合体的成
  • 罗伯特·罗德罗伯特·罗德(英语:Robert G. Roeder,1942年6月3日-),出生在美国印第安纳州布恩维尔,美国生物学家。他被称为真核转录的先驱。他于2000年获盖尔德纳国际奖,2003年获拉斯克基础医学研
  • 佛教共识宣言《上座部佛教与大乘佛教的基本共识》(英语:Basic Points Unifying the Theravāda and the Mahāyāna)是一份重要的佛教普世宣言,发表于1967年世界佛教僧伽会(WBSC)的第一次会议
  • 气壮山河气壮山河(英语:Cavalcade)或称为乱世春秋,是一部20世纪福克斯公司拍摄的上映于1933年的电影,赢得了第6届奥斯卡最佳影片、最佳导演和最佳艺术指导奖。这是一部根据戏剧改编而来的
  • 张从正张从正(1156年-1228年),字子和,号戴人。睢州考城(今河南兰考县)人,金朝著名医家。自幼喜读书,经史百家无不涉猎,性格豪放,不拘细节,世代从医,对医学造诣尤深,精于《内经》、《难经》、《伤
  • 黄腿山蛙黄腿山蛙(学名:Rana muscosa)是极危物种已列入美国联邦濒危物种(the federal Endangered Species List)和世界自然保护联盟濒危物种红色名录。科学专家曾估计,目前在野外只剩下了1
  • 麦角二乙胺麦角酸二乙酰胺(Lysergic acid diethylamide,德文 Lyserg-Säure-Diäthylamid),常简称为LSD,是一种强烈的半人工致幻剂。它由麦角酸中合成,对氧气、紫外线与氯十分敏感(尤其是当LS