椭圆曲线

✍ dations ◷ 2025-10-06 20:34:03 #椭圆曲线
在数学上,椭圆曲线(英语:Elliptic curve,缩写为EC)为一平面代数曲线,由如下形式的方程定义且满足其是无奇点的;亦即,其图形没有尖点或自相交。(当系数域的特征为2或3时,上面的方程不能涵盖所有非奇异的三次曲线;见下面的#一般域上的椭圆曲线。)正式地,椭圆曲线是光滑的、射影的、亏格为1的代数曲线,其上有一个特定的点O。椭圆曲线是阿贝尔簇 – 也就是说,它有代数上定义的乘法,并且对该乘法形成阿贝尔群 – 其中 O即为单位元。若 y 2 = P ( x ) {displaystyle y^{2}=P(x),} ,其中P为任一没有重根的三次或四次多项式,然后可得到一亏格1的无奇点平面曲线,其通常亦被称为椭圆曲线。更一般化地,一亏格1的代数曲线,如两个三维二次曲面相交,即称为椭圆曲线。运用椭圆函数理论,我们可以证明定义在复数上的椭圆曲线对应于环面在复射影平面内的嵌入。环面也是一个阿贝尔群,事实上,这个对应也是一个群同构。尽管椭圆曲线的正式定义需要一定的代数几何背景,在实数上的椭圆曲线的一些特征可以使用入门级别的代数与几何来描绘。在这种情况下,椭圆曲线是由下列方程定义的平面曲线:其中a和b为实数。这类方程被称为魏尔斯特拉斯方程。椭圆曲线的定义也要求曲线是非奇异的。几何上来说,这意味着图像里面没有尖点、自相交或孤立点。代数上来说,这成立当且仅当判别式不等于0。(尽管这里的因子−16与曲线是否是非奇异的无关,这样定义判别式在对椭圆曲线进行更深入的研究时有用。)非奇异椭圆曲线的(实)图像在判别式为正的时候有两个连通分量,在判别式为负时则有一个连通分量。例如,在本小节的图像中,第一个曲线的判别式为64,而第二个曲线的判别式为−368。定义无穷远点0为椭圆曲线E上的一点。定义 + 运算子:取E上的两点P,Q,若两者相异,P + Q表示穿过P和Q的弦和椭圆曲线相交的第三点,再经x轴反射的镜像点;若两者是同一点,P+P=2P表示以P为切点和椭圆曲线相交的点再经x轴反射的镜像点。若P和Q的弦与y轴平行,P+Q=0(无限远点)。+定义了一个E上的交换群,这个群以0为单位元。特别地,所有有理点组成了E的子群。上面的群可以用代数方式定义。给定域 K {displaystyle K} (其中 K {displaystyle K} 的特征值非2或者3)上的曲线 E : y 2 = x 3 − p x − q {displaystyle E:y^{2}=x^{3}-px-q,} ,及非无穷远点 P ( x P , y P ) , Q ( x Q , y Q ) ∈ E {displaystyle P(x_{P},y_{P}),Q(x_{Q},y_{Q})in E} 。先假设 x P ≠ x Q {displaystyle x_{P}neq x_{Q}} ,设 s = y P − y Q x P − x Q {displaystyle s={frac {y_{P}-y_{Q}}{x_{P}-x_{Q}}}} (因 K {displaystyle K} 是域, s {displaystyle s} 有定义)。定义 R = P + Q {displaystyle R=P+Q,} 。因为 P , Q , R {displaystyle P,Q,R} 共线,令该直线 F {displaystyle F} 的方程为 y = s x + d {displaystyle y=sx+d,} 。直线 F {displaystyle F} 与曲线 E {displaystyle E} 相交,有:P , Q , R {displaystyle P,Q,R} 是两线的交点,即方程的解。有:替换系数后可得:若 x P = x Q {displaystyle x_{P}=x_{Q},} :椭圆曲线可以被定义在任意域 K上;椭圆曲线的正式定义是K上的亏格为1的非奇异射影代数曲线,并具有一个定义在K特殊的点。如果K的特征不等于2或3,那么K上每个椭圆曲线都能写成如下形式其中p和q为K中的元素,使得右手边的多项式x3 − px − q没有二重根。如果特征等于2或3,那么需要保留更多项:在特征为3的情况下,最一般的方程具有如下形式这里常数b2, b4, b6可以任取,但需满足使得右手边的多项式无重根(写成这个形式有历史原因)。在特征为2的情况下,即使是这种形式也不够,其最一般的方程为需满足所定义的簇是非奇异的。

相关

  • Hs5f14 6d6 7s2(预测)2, 8, 18, 32, 32, 14, 2(预测)第一:733.3(估值) kJ·mol−1 第二:1756.0(估值) kJ·mol−1 第三:2827.0(估值) kJ·mol−1 (主条目:
  • 宾格宾格(拉丁语:casus accusativus, 英语:accusative case,缩写: .mw-parser-output .smallcaps-all{font-variant:small-caps;text-transform:lowercase}.mw-parser-output .smallc
  • 2003年欧洲热浪2003年欧洲热浪在欧洲是一个最热的夏天气温记录。由于大部分欧洲住宅、老人院无空调,热浪导致危害几个国家的居民健康,并结合干旱造成作物短缺,令南欧共有35,000人丧生。14,802
  • 易化扩散被动运输(英文:Passive transport)指的是生物化学物质的运动或其他原子或分子穿过细胞膜。不像主动运输,该过程不需要化学能,这是因为顺浓度梯度的跨膜转运总是伴随着系统熵增
  • 穿越美國《穿越美国》(Transamerica)是一部2005年制作的美国电影,讲述美国洛杉矶一位即将变性成女人的美国人,前往纽约市去保释他素未谋面的儿子,横跨回加州洛杉矶的一段旅程。布莉(Bree,菲
  • 斯科特·瑞安斯科特·迈克尔·瑞安(Scott Michael Ryan,1973年5月12日-)是一位澳大利亚政治人物,他的党籍是澳大利亚自由党。自2008年开始,他是代表维多利亚州的澳大利亚参议院议员之一。他出
  • 多元文化政策多元文化主义(Multiculturalism)是社会用以管理多元文化性的公共政策,它采取官方手段,在一个国家内部推行不同文化之间的相互尊重和宽容。多元文化政策强调不同的文化各有其独特
  • 1076年
  • 储铁蛋白铁蛋白是一种常见的球状蛋白质,由24个蛋白亚基构成,它能在所有类型的细胞中表达,是原核生物与真核生物用于储存铁离子的主要蛋白质。铁蛋白的主要功能是使铁离子的储存维持在溶
  • 曾文郡曾文郡为台湾日治时期的行政区划,隶属台南州,郡役所设于麻豆街,因位处曾文溪畔而得名。在《新台湾的事业界》(原文书名:《新台湾の事业界》)一书中,称该郡是文旦的名产地:123。曾文