独立 (概率论)

✍ dations ◷ 2025-07-22 02:44:28 #概率论

在概率论里,说两个事件是独立的,直觉上是指一次实验中一事件的发生不会影响到另一事件发生的概率。例如,在一般情况下可以认为连续两次掷骰子得到的点数结果是相互独立的。类似地,两个随机变量是独立的,若其在一事件给定观测量的条件概率分布和另一事件没有被观测的概率分布是一样的。

标准的定义为:

这里, ∩ 是和的交集,即为和两个事件都会发生的事件。

更一般地,任意个事件都是互相独立的当且仅当对其任一有限子集1, ..., ,会有

或写作: Pr ( i = 1 n A i ) = i = 1 n Pr ( A i ) . {\displaystyle \Pr \left(\bigcap _{i=1}^{n}A_{i}\right)=\prod _{i=1}^{n}\Pr(A_{i}).\!\,}

若两个事件和是独立的,则其给之的条件概率和的“无条件概率”一样,即

至少有两个理由可以解释为何此一叙述不可以当做独立性的定义:(1)和两个事件在此叙述中并不对称,及(2)当概率为0亦可包含于此叙述时,会有问题产生。

若回想条件概率Pr( | )的定义为

则上面的叙述则会等价于

即为上面所给定的标准定义。

注意独立性并不和它在地方话里的有相同的意思。例如,一事件独立于其自身当且仅当

亦即,其概率不是零就是一。因此,当一事件或其补集几乎确定会发生,它即是独立于其本身。例如,若事件从单位区间的连续型均匀分布上选了0.5,则是独立于其自身的,尽管重言式地,完全决定了。

上面所定义的是的独立性。在这一节中,我们将处理随机变量的独立性。若是一实数值随机变量且是一数字的话,则 ≤ 的事件是一个事件,所以可以有意义地说它是否会独立于其他的事件。

两个随机变量和是独立的当且仅当对任何数字和,事件(小于或等于的事件)和为如上面所定义的独立事件。类似地,随意数量的随机变量是明确地独立的,若对任一有限子集1, ..., 和任一数字的有限子集1, ..., ,其事件, ..., 会是如上面所定义的独立事件。

其量测可以由事件来取代上面所定义的事件,其中为任一包络集合。此一定义完全和上述其随机变量的值为实数的定义等价。且他有着可以作用于复值随机变量和在任一拓扑空间中取值之随机变量上的优点。

即使任意数目中的任二个随机变量都是独立的,但它们可能仍旧会无法互相独立;这种的独立被称为两两独立。

若和是独立的,则其期望值会有下列的好性质:E = E E,(假定都存在)且其方差(若存在)满足

因为其协方差 cov(,) 为零。(其逆命题不成立,即若两个随机变量的协方差为0,它们不一定独立。)

此外,具有分布函数() 及 ()和概率密度() 及 ()的随机变量和为独立的,当且仅当其相结合的随机变量(,)有一共同分布

或等价地,有一共同密度

类似的表示式亦可以用来两个以上的随机变量上。

直觉地,两个随机变量和给定条件独立,如果:一旦知道了,从的值便不能得出任何关于的信息。例如,相同的数量的两个测量和不是独立的,但它们是给定条件独立(除非两个测量的误差是有关联的)。

条件独立的正式定义是基于条件分布的想法。如果、和是离散型随机变量,那么我们定义和给定条件独立,如果对于所有使 P ( Z z ) > 0 {\displaystyle \mathrm {P} (Z\leq z)>0} 、和,都有:

另一方面,如果随机变量是连续的,且具有联合概率密度,那么和给定条件独立,如果对于所有使 p Z ( z ) > 0 {\displaystyle p_{Z}(z)>0} 、和,都有:

如果和给定条件独立,那么对于任何满足 P ( Z = z ) > 0 {\displaystyle \mathrm {P} (Z=z)>0} 、和,都有:

也就是说,给定和的条件分布,与仅仅给定的条件分布是相同的。对于连续的情况下的条件概率密度函数,也有一个类似的公式。

独立性可以视为条件独立的一个特例,因为概率可以视为不给定任何事件的条件概率。

相关

  • 北宁市北宁市可以指:
  • 奥米加3ω−3脂肪酸(Omega-3 fatty acids)又称n−3脂肪酸,是一类不饱和脂肪酸,其中最重要的3种为:ALA(存在于植物中的油),EPA和DHA(这二种发现存在于海洋动植物油中)。从脂肪酸分子中距离羧基
  • 恋发恋发癖是指对毛发的恋物行为,最常见的是头发,但也可以包括其他部位的毛发,例如阴毛、腋毛和体毛。恋髪癖属于恋物癖的一种,为男性居多。这符合恋物产生于幼年期的印刻作用的理论
  • 黑穗菌属见内文黑粉菌属(学名:Ustilago)是黑粉菌目黑粉菌科下的一属真菌。其冬孢子堆可寄生于寄主的花器等各部位,成熟时为粉末状,通常为深褐色至黑色,亦有淡黄色或紫褐色。冬孢子单胞,近球
  • 重碳酸盐碳酸氢盐是碳酸形成的酸式盐,含有碳酸氢根离子—HCO3−。大多数碳酸氢盐对热不稳定,会分解为碳酸盐、二氧化碳和水。碱金属碳酸氢盐溶于水,水溶液呈碱性,与酸迅速反应放出二氧化
  • MTV欧洲音乐大奖2011年MTV欧洲音乐大奖在2011年11月6日于北爱尔兰贝尔法斯特奥德赛剧院(Odyssey Arena)举行,主持人为赛琳娜·戈梅兹。2011年9月19日,MTV国际音乐网公布入围名单。女神卡卡获得6
  • 约翰·库萨克约翰·保罗·库萨克(英语:John Paul Cusack,1966年6月28日-)是一名美国男演员。参演过较知名的作品如《空中监狱》(1997年)、《傀儡人生》(1999年)、《致命ID》(2003年)、《1408》(2007
  • 柯 克科克、柯克、寇克(Cocke、Coke、Cook、Cork、Kirk、Kok、Koke)可以指:
  • AC-130H/U Spectre/Spooky II炮艇机洛克希德AC-130空中炮艇(Lockheed AC-130 Gunship)是一个由美国空军所操作的重型对地攻击机系列,是以洛克希德C-130“力士”式(Hercules)运输机为基础所进一步改装而成,主要用于密
  • 章丘大葱章丘大葱是章丘当地的主要土特产之一,而章丘也以大葱闻名,主产地绣惠镇女郎山脚下,此葱主要特点是高大甜脆,每年都组织“葱王”评选活动,有的葱高达两米以上。2014年曾作APEC全聚