理查德·布饶尔

✍ dations ◷ 2025-10-10 03:24:29 #理查德·布饶尔
理查德·达戈贝尔特·布饶尔(英语:Richard Dagobert Brauer,1901年2月10日-1977年4月17日),德国、美国数学家,主要工作领域是抽象代数,但在数论上作出了重要贡献。他是模表示论的创始人。阿尔弗雷德·布劳尔是理查德的哥哥,比他大七岁。阿尔弗雷德和理查德都对科学和数学感兴趣,但阿尔弗雷德却在第一次世界大战的战斗中受伤。当他还是个孩子的时候,理查德就梦想成为一名发明家,并于1919年2月被柏林-夏洛滕堡工业大学录取。他很快就转到了柏林大学。除了1920年夏天他在弗赖堡大学学习之外,他都在柏林学习,并在1926年3月16日获得博士学位。1921年,Issai Schur 组织了一次研讨会,提出了 Alfred 和 Richard 共同研究的一个问题,并发表了研究结果。海因茨·霍普夫在同一时期也解决了这个问题。Richard 在 Schur 指导下写了论文,为实正交(旋转)群的不可约、连续、有限维表示提供了一种代数方法。伊尔丝·卡格尔也曾在柏林大学学习数学;她和理查德于1925年9月17日结婚。他们的儿子乔治·乌尔里希(1927年生)和弗雷德·冈瑟(1932年生)也成为了数学家。布饶尔在柯尼斯堡(今加里宁格勒)开始了他的教学生涯,担任康拉德·克诺普的助教。布饶尔在柯尼斯堡阐述了完备域上的中心可除代数,这种代数的同构类构成了由他引入的所谓Brauer群的元素。1933年纳粹党掌权后,紧急援助外国学者委员会采取行动帮助布饶尔等犹太科学家。布饶尔被聘为肯塔基大学的助理教授。理查德接受了这份工作,直到1933年底,他在肯塔基州的列克星敦市教学,用的是英语。第二年,伊尔丝和乔治、弗雷德一起来到了美国;哥哥阿尔弗雷德1939年来到了美国,但他们的妹妹爱丽丝却在大屠杀中被杀。1934年,赫尔曼·外尔邀请理查德到普林斯顿高等研究院协助他。理查德和内森·贾柯勃逊编辑了韦尔的讲座《连续群的结构和表示》。在埃莉·诺特的影响下,理查德被邀请到多伦多大学担任教职。他和研究生Cecil J. Nesbitt一起发展的模表示论于1937年出版。罗伯特·斯坦伯格、斯蒂芬·阿瑟·詹宁斯和拉尔夫·斯坦顿也是布劳尔在多伦多的学生。布饶尔还与中山正进行了关于代数表示的国际研究。1941年,威斯康星大学麦迪逊分校聘布饶尔教授为客座教授。第二年,他访问了埃米尔·阿廷任教的印第安纳布卢明顿高级研究学院。1948年,理查德和伊尔莎搬到安阿伯,在那里他和 Robert M. Thrall 为密歇根大学的近世代数课程做出了贡献。布饶尔和他的研究生 K·A·福勒一起证明了布劳尔-福勒定理。唐纳德·约翰·刘易斯也是他在密歇根大学的学生。1952年,布劳尔进入哈佛大学任教。1971年退休前,他曾教授过许多有抱负的数学家,如唐纳德·帕斯曼和I·马丁·艾萨克斯。布劳尔夫妇经常去看望他们的朋友,比如 Reinhold Baer,Werner Wolfgang Rogosinski,以及卡尔·西格尔。一些定理以他的名字命名,包括布饶尔诱导特征标定理,这个定理在数论和有限群论中都有应用,以及其推论布饶尔特征标刻画定理,这是群特征标理论的核心。1956年发表的 Brauer-Fowler 定理后来为有限单群分类定理提供了重要的推动力,因为它意味着对合的中心化子(2阶元素)具有特定的结构的有限单群只有有限个。布饶尔应用模表示论,特别是通过他的三个主定理,获得了关于群特征标的微妙信息。这些方法对于具有低秩西罗 2-子群的有限单群分类特别有用。 Brauer-Suzuki 定理表明,任何有限单群都不可能具有广义四元数 Sylow 2-子群。Alperin-Brauer-Gorenstein 定理分类了具有圈或准二面体 Sylow 2- 子群的有限群。 布饶尔发展的方法也为分类纲领做出了贡献:如Gorenstein-Walter 定理,分类了有二面体 Sylow 2-子群和的有限群;以及 Glauberman Z* 定理。有循环亏群的块的理论,由布饶尔首先在主块具有 p 阶亏群的情况下得出,后来由 E. C. Dade 全面推广,在群论中也有若干应用,例如在小维数复数域上的矩阵的有限群。 布饶尔树是一个和带有循环亏群的块相联系的组合对象,它对块的结构信息进行了编码。1970年,布饶尔被授予美国国家科学奖章。1898年,Eduard Study为Klein的百科全书写了一篇关于超复数的文章。这篇文章于1908年为亨利·嘉当的法语版作了扩充。到了20世纪30年代,很明显有必要更新 Study 的文章,于是 Richard Brauer 被要求就这个主题写文章。事实证明,在1936年布劳尔在多伦多准备他的手稿时,虽然手稿被接受了,政治和战争却阻碍了出版。尽管如此,布劳尔在20世纪40年代、50年代和60年代一直保留着他的手稿,并于1979年由日本冈山大学出版。 在他去世后,这篇论文也在他的《论文集》第一卷中以第22号论文的形式出现。文章题目是“超复数的代数”("Algebra der hyperkomplexen Zahlensysteme (Algebren)")。与 Study 和嘉当的探索性文章不同,布饶尔的文章读起来像是现代的抽象代数教材,覆盖面广泛。下面是他的导言:1929年在柯尼斯堡时,布饶尔在《数学杂志》上发表了一篇名为《论超复数系》的文章,主要是关于整环(Nullteilerfrei systeme)和他后来在多伦多使用的域论。

相关

  • 得克萨斯州得克萨斯州(英语:State of Texas,/ˈtɛksəs/,当地 /ˈtɛksɪz/),简称得州或德州,是全美国土地面积和人口的第二大州(面积仅次于阿拉斯加州;人口次于加利福尼亚州)。得克萨斯州位于
  • 哈伯特顶点在1953年,美国地质学家哈伯特(King Hubbert)大胆预言,美国石油生产速率将于60年代末至70年代初左右达到顶峰,达到了顶峰之后就会一直下降。这种情形叫做哈伯特顶点(Hubbert's peak
  • 马其顿方阵马其顿方阵是由马其顿国王腓力二世(前359年-前336年),所创的军队方阵阵型,以16乘16共256名手持长矛及盾牌的步兵所构成的正方形阵形。马其顿密集方阵由马其顿国王腓力二世所创,其
  • 神的存在性神是否存在(上帝是否存在)问题是指西方哲学和神学中对神(上帝,God)是否存在的疑问和探讨。西方社会长久以来一直存在着有关神是否存在的辩论。数千年中,许多神学家、哲学家与科学
  • Micrograph显微照相是以显微镜或类似的器材所摄取的相片或影像,以显示放大了的物件影像。显微照相是由加拿大发明家范信达所发明。有制造显微照相,可以在显微镜上安装照相机,取代目镜;或是
  • 迪尔巴尔语迪尔巴尔语(英语:Dyirbal或Djirubal)是一种通行于昆士兰东北部数名迪尔巴尔部落居民之间的澳大利亚原住民语言。它是帕马-恩永甘语系迪尔巴尔语族的语言之一。它有着许多在语言
  • 听觉皮层初级听觉皮层是颞叶的一部分,在人类和其它脊椎动物中发挥处理听觉信息的功能。作为听觉系统的一部分,初级听觉皮层在听觉通路中执行基本的和更为高级的功能。它位于颞叶的两侧
  • 补语英语补语的作用对象是主语和宾语,具有鲜明的定语性描写或限制性功能,在句法上是不可或缺的。补语是起补充说明作用的成分。最常见的是宾语补足语。名词、动名词、形容词、副词
  • 超声诊断学医学超声检查(超声检查、超声诊断学)(英语:Medical ultrasound)是一种基于超声的医学影像诊断技术,使肌肉和内脏器官等软组织可视化,包括其尺寸、结构和病理学病灶。产科超声检查广
  • 单胚动物门单胚动物门(学名:Monoblastozoa)是动物界的一门,其下只有咸水虫(Salinella salve)一个物种。咸水虫是一种是否存在还有争议的动物,由J. Frenzel 1892年在阿根廷的一个盐田中发现,并