超方形

✍ dations ◷ 2025-07-21 17:53:05 #超方形
在几何学中,超方形(英语:Hypercube),又称立方形、正测形(Measure Polytope)是指正方形和立方体的n维类比(对于正方形,n=2,对于立方体,n=3)。它是一类封闭的、紧致的、凸的图形,它们的1维骨架(英语:skeleton (topology))是由一群在其所在空间对准每个维度整齐排列的等长的线段组成的,其中相对的线段互相平行,而相交于一点的线段则互相正交。在n维空间中单位超方形(棱长为1)的对角线长等于 n {displaystyle {sqrt {n}}} .一个n维的超方形又被叫做n-超方形。“正测形”(Measure Polytope)也是一个常用的名字,尤其是在H.S.M.考克斯特的文章中(这个词最先是由Elte,1912发明的),但它现在已被“超方形”和“立方形”代替了。(而然在日本,由“Measure Polytope”翻译过来的“正测形”仍在使用)超方形是一种特殊的超矩形(英语:Hyperrectangle)(也被叫做正交形)。一个单位超方形是棱长为1个单位长度的超方形。通常,一个角(或叫顶点)是2n个在Rn中的各坐标值等于0或1的点的超方形被特指为在这个坐标系下的基本单位超方形。这个过程可以被推进到任意维度。这个扫出体积的过程可以被数学形式化为闵可夫斯基和:d维超方形是d个互相垂直的单位长度线段的闵可夫斯基和,因此超方形是环带多面体的一个很好的例子。超方体的1阶骨架(英语:Skeleton (topology))是一个超方形图(英语:hypercube graph)。n维的单位超方形是所有由直角坐标系 ( ± 1 2 , ± 1 2 , ⋯ , ± 1 2 ) {displaystyle left(pm {frac {1}{2}},pm {frac {1}{2}},cdots ,pm {frac {1}{2}}right)} 的所有符号排列所对应的点组成的凸包。它的棱长为1,而它的n维超体积是1。一个n维超方形有时也被表示为直角坐标 ( ± 1 , ± 1 , ⋯ , ± 1 ) {displaystyle (pm 1,pm 1,cdots ,pm 1)} 的所有符号排列所对应的点组成的凸包。这顶点坐标写法因为简便而经常被使用。它的棱长是2,而n维超体积是2n。超方形家族是少有的几个在任何维度都出现的正多胞形家族之一。超方形家族是三个正多胞形家族之一,被考克斯特标记为γn。另外两个是超方形对偶正轴形家族,标记为βn,以及正单纯形家族,标记为αn。例外,还有第四个不由凸正多胞形而是正无穷胞形,即超空间密铺组成的家族超方形堆砌家族,标记为δn,它们是超方形的超空间密铺。另外一个与超方形相关的由一系列半正多胞形(英语:Uniform polytope)组成的半正家族是半超方形家族,它们可由交错地删除对应维度超方形的顶点并在切口上添加新的正单纯形面来构造,标记为hγn。任何一个n-超方体(n>0)都是由低维的超方形元素组成的:它的(n-1)维表面(“维面”)是(n-1)维的超方形,它的(n-2)维边缘(“维脊”)是(n-2)维的超方形,它的(n-3)维元素(“维顶”)是(n-3)维的超方形…… n维的超方形有2n个维面(一维线段有两个端点;二维正方形有4条边或叫棱;三维立方体有6个面;四维超正方体有8个胞……)和 2 n {displaystyle 2^{n}} 个顶点(例如,立方体有 2 3 {displaystyle 2^{3}} 个顶点)。一个简单的计算n-超方体"n-2"-面个数的公式是: 2 n 2 − 2 n {displaystyle 2n^{2}-2n}n-超方形表面上m维超方形(0≤m≤n)的个数是:例如,四维超正方体(n=4)包含了8个立方体(3-超方体)、24个正方形(2-超方体)、32个线段(1-超方体)和16个点(0-超方体)。这个特性能够用组合学来证明。 2 n {displaystyle 2^{n}} 个顶点中的每一个都决定了n-超方体的一个 m {displaystyle m} 维表面。我们有 ( n m ) {displaystyle {begin{smallmatrix}{n choose m}end{smallmatrix}}} 种方法来选择哪些线段(“边”)决定了这表面所在的空间。但是因为每个表面都有 2 m {displaystyle 2^{m}} 个顶点,所以每个表面都被算了 2 m {displaystyle 2^{m}} 次,因此我们需要将结果再除以这个数。由此我们得到了上述性质。这个结果也能被递推关系式产生出来。例如,将二维空间中的正方形向三维空间延伸,在4个顶点处延伸出4条棱,最后加上第二个正方形来形成一个立方体,我们能算出总共有 E 1 , 3 {displaystyle E_{1,3}!} = 12 条棱。-​-​{}​{4,3}​{4,3,3}​{4,3,3,3}​{4,3,3,3,3}​{4,3,3,3,3,3}​{4,3,3,3,3,3,3}​{4,3,3,3,3,3,3,3}​{4,3,3,3,3,3,3,3,3}​{4,3,3,3,3,3,3,3,3,3}​一个n维超正方体能通过一个扭曲正交投影(英语:Petrie_polygon#The_hypercube_and_orthoplex_families)投影到2n边形中,这里展示出了从线段到十三维超正方体的13个超方形。n-超方体的棱的图像等距同构于(n-1)-单纯形的表面框架(英语:Convex polytope#The_face_lattice)的哈斯图。这种特殊关系可以通过以适当的角度看n-超方体使得相对的两个顶点处在图像的两个顶点,对应于(n-1)-单纯形自己和空集元素。每一个与最上方的顶点相连的顶点唯一的映射到(n-1)-单纯形的维面,再与之相连的顶点映射到单纯形的维脊,如此等等,并且与最下方的顶点相连的顶点映射到单纯形的棱。这个特殊关系可以被用来高效地产生(n-1)-单纯形的表面框架,毕竟可用于计算所有多胞形表面框架的一般方法在计算上比较困难。

相关

  • CuS硫化铜是一种铜和硫的化合物,化学式CuS,在自然界中以深蓝色的靛铜矿形式存在。它是一种中等导电性的的导体。 硫化氢气体通入铜盐溶液时可形成硫化铜的胶状沉淀。 目前也有研
  • 1970年1970年美国人口普查(英语:1970 United States Census)是美国历史上第19次全国人口普查,确定了美国的常住人口为203,392,031人,相比1960年美国人口普查,同比增长为13.4%。加利福尼
  • 昂热城堡昂热城堡(Château d'Angers)是法国昂热的一座大型法式城堡。昂热城堡耸立在曼恩河畔的岩石上,由于它的战略防御位置,曾是罗马人居住的地点之一。在9世纪,堡垒属于强大的安茹伯爵
  • 富士软片会长・CEO 古森重隆 社长・COO 助野健児影像:彩色胶片、数字相机、光学设备、照片专用复印纸、影像服务和设备,医疗 医疗保健:医疗系统设备、生命科学产品、药品、图形系统设
  • 荷尔蒙疗法荷尔蒙疗法(英语:Hormone therapy)是任何形式的激素疗法,其中患者在治疗过程中接受激素,以补充缺乏天然存在的激素,或用其他激素代替天然存在的激素。用激素拮抗剂治疗也可称为抗
  • 阿兰·霍奇金艾伦·劳埃德·霍奇金爵士,OM,KBE,FRS(英语:Sir Alan Lloyd Hodgkin,1914年2月5日-1998年12月20日),英国生理学家与生物物理学家,与安德鲁·赫胥黎(Andrew Fielding Huxley)因为共同研究
  • You Am I乐队You Am I乐队,是一个来自澳洲悉尼的摇滚乐队,成员有Tim Rogers,Davey Lane,Rusell Hopkinson和ANdy Kent 他们暂时是澳洲唯一一队有3张大碟有拿个澳洲排行磅冠军。安德鲁.肯特
  • 按揭抵押(mortgage),是指提供私人资产(不论是否为不动产)作为债务担保的动作,多发生于购买房地产时银行借出的抵押贷款或在典当商折现非不动产的物品。抵押常在银行或地产界使用。在广
  • 奎章阁奎章阁(朝鲜语:규장각)是朝鲜王朝的王室图书馆,由正祖在昌德宫内成立,是朝鲜时代文献的重要保存所。1776年,正祖于昌德宫划出一地作图书馆,收藏中国与朝鲜文献。1894年甲午改革后图
  • 永安话永安话(闽中语:)是一种汉语族闽语支闽中语的一种方言,也是闽中语的代表方言。主要通行于福建省永安市。可以分成4小片声母17个。零声母以外的 16 个声母如下表:其中为一个音位,在