首页 >
哥德尔完备性定理
✍ dations ◷ 2025-10-08 18:57:14 #哥德尔完备性定理
哥德尔完备性定理是数理逻辑中重要的定理,在1929年由库尔特·哥德尔首先证明。它的最熟知的形式声称在一阶谓词演算中所有逻辑上有效的公式都是可以证明的。上述词语“可证明的”意味着有着这个公式的形式演绎。这种形式演绎是步骤的有限列表,其中每个步骤要么涉及公理要么通过基本推理规则从前面的步骤获得。给定这样一种演绎,它的每个步骤的正确性可以在算法上检验(比如通过计算机或手工)。如果一个公式在这个公式的语言的所有模型中都为真,它就被称为“逻辑上有效”的。为了形式的陈述哥德尔完备性定理,你必须定义这个上下文中词语“模型”的意义。这是模型论的基本定义。在另一个方向上,哥德尔完备性定理声称一阶谓词演算的推理规则是“完备的”,在不需要额外的推理规则来证明所有逻辑上有效的公式的意义上。完备性的逆命题是“可靠性”。一阶谓词演算的实情是可靠的,就是说,只有逻辑上有效的陈述可以在一阶逻辑中证明,这是可靠性定理断言的。处理在不同的模型中什么为真的数理逻辑分支叫做模型论。研究在特定形式系统中什么为可以形式证明的分支叫做证明论。完备性定理建立了在这两个分支之间的基本联系。给出了在语义和语形之间的连接。但完备性定理不应当被误解为消除了在这两个概念之间的区别;事实上另一个著名的结果哥德尔不完备定理,证实了对“在数学中什么是形式证明可以完成的”有着固有的限制。不完备定理的名声与另一种意义的“完备”有关,参见模型论。更一般版本的哥德尔完备性定理成立。它声称对于任何一阶理论T和在这个理论中的任何句子S,有一个S的自T的形式演绎,当且仅当S被T的所有模型满足。这个更一般的定理被隐含使用,例如,在一个句子被证实可以用群论的公理证明的时候,通过考虑一个任意的群并证实这个句子被这个群所满足。完备性定理是一阶逻辑的中心性质,不在所有逻辑中成立。比如二阶逻辑就没有完备性定理。完备性定理等价于超滤子引理,它是弱形式的选择公理,在不带有选择公理的策梅洛-弗兰克尔集合论中有着等价的可证明性。对定理的最初证明的解释请参见哥德尔完备性定理的最初证明。在现代逻辑课本中,哥德尔完备性定理通常使用Leon Henkin的证明而不是哥德尔最初的证明。
相关
- 第二代头孢菌素(法语:Cephalosporine、英语:Cephalosporin),又名先锋霉素,是一系列属于β内酰胺类的抗生素。与头霉素一并细分为头孢烯。头孢菌素化合物最初是于1948年,由意大利科学家Giu
- 传感器传感器(英语:Sensor)是用于侦测环境中所生事件或变化,并将此消息发送出至其他电子设备(如中央处理器)的设备,通常由敏感组件和转换组件组成。传感器是一种物理设备或生物器官,能够探
- Pt4f14 5d9 6s12, 8, 18, 32, 17, 1蒸气压第一:870 kJ·mol−1 第二:1791 kJ·mol主条目:铂的同位素铂(拼音:bó,注音:ㄅㄛˊ,粤拼:bok6,英语:Platinum),化学元素,俗称白金,化学符号为Pt,原子
- 瓦巴拉大陆瓦巴拉大陆(Vaalbara)是一个理论上曾经存在的超大陆,自36亿年前开始形成,31亿年前成形,28亿年前分裂。该超大陆的名称“Vaalbara”来自南非的卡普瓦克拉通(Kaapvaal craton)和西澳
- 火鸡野生火鸡 Meleagris gallopavo 眼斑火鸡 Meleagris ocellata火鸡(英语:turkey),又名七面鸟或吐绶鸡,是一种原产于北美洲的家禽。火鸡体型比一般鸡大,可达10公斤以上。根据传统,美国
- 孟加拉孟加拉人民共和国(孟加拉语:গণপ্রজাতন্ত্রী বাংলাদেশ,Gônôprôjatôntri Bangladesh),通称孟加拉国(বাংলাদেশ .mw-parser-output .IPA{font-fami
- 雅各雅各(Jacob或Ya'akov;希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsov
- 皮埃尔·阿伯拉尔彼得·阿伯拉尔,又译阿伯拉、亚伯拉德(法语:Pierre Abélard,1079年-1142年4月21日),法国著名神学家和经院哲学家,一般认为他开创概念论之先河。阿伯拉生于法国布列塔尼半岛南特以东
- Verizon Communications威瑞森通信(Verizon Communications(/vəˈraɪzən/),NYSE:VZ),是美国一家主要电信公司,全球领先的宽带和电信服务提供商,道琼斯30种工业平均指数组成之一。公司总部位于纽约市,主要
- 跑跑步的定义是指陆生动物使用足部,移动最快捷的方法。它在运动上的定义是一种步伐,有时双脚不会同一时间碰到地面。它亦是一种有氧的运动或无氧的运动。跑步是整个身体协调的过