实际气体状态方程

✍ dations ◷ 2025-07-21 19:47:38 #实际气体状态方程
范德华方程(van der Waals equation)(一译范德瓦耳斯方程),简称范氏方程,是荷兰物理学家范德华于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点在于将被理想气体模型所忽略的的气体分子自身大小和分子之间的相互作用力考虑进来,以便更好地描述气体的宏观物理性质。范德华方程具体形式为:式中更常用的形式为:在第二个方程里下表列出了部分气体的a,b 的值在上述方程中必须严格区分总体平均性质和单个分子的性质。譬如,第一个方程中的 v {displaystyle v} 是每个分子平均占有空间的大小(可以理解成分子平均“势力范围”的大小),而 b ′ {displaystyle b'} 则为单个分子本身“包含”的体积(若为单原子分子如稀有气体, b ′ {displaystyle b'} 就是原子半径内包含的体积)。范氏方程对气-液临界温度以上流体性质的描写优于理想气体方程。对温度稍低于临界温度的液体和低压气体也有较合理的描述。但是,当描述对象处于状态参量空间(P,V,T)中气液相变区(即正在发生气液转变)时,对于固定的温度,气相的压强恒为所在温度下的饱和蒸气压,即不再随体积 V {displaystyle V} (严格地说应该是单位质量气体占用的体积,即比容)变化而变化,所以这种情况下范氏方程不再适用。下面以理想气体状态方程为基础,推导范氏方程。若把气体视为由体积无限小、相互之间无作用力的分子组成,这种模型便是理想气体模型,与其相对应的状态方程是:若抛弃前一个的假设,把组成气体的分子视为有一定大小的刚性球(其半径称为范德华半径),用 b {displaystyle b} 表示这些“球”的体积,上面的方程便改写为:在这里,每个分子的“占有体积” v {displaystyle v} 被所谓“排斥体积” v − b {displaystyle v-b} 代替,反映了分子在空间中不能重叠。若气体被压缩至体积接近分子体积之和(即分子间空隙 v − b {displaystyle v-b} 趋向于0),那么其压强将趋于无穷大。下一步,我们考虑原子对之间的引力。引力的存在会使分子的平均亥姆霍兹自由能下降,减少量正比于流体的密度。但压强的大小满足热力学关系式中A* 为每个分子的亥姆霍兹自由能。由此得到,引力使压强减小的量正比于 1 v 2 {displaystyle {frac {1}{v^{2}}}} 。记该比例常数为 a {displaystyle a} ,可得这便是范氏方程。在气体压强不太高的情况下,以下事实成立:所以此时理想气体方程是范氏方程(也是对实际气体行为的)的一个良好近似。随着气体压力的增加,范氏方程和理想气体方程结果的差别会变得十分明显(左图为 CO 2 {displaystyle {ce {CO2}}} 分别用理想气体方程和范德华方程模拟的p-V等温线,温度70 °C):范氏方程适用于气体的液化过程。气体液化可能发生的最高温度称为临界温度,用 T C {displaystyle T_{C}} 表示:右图所示为用范氏方程模拟的 CO 2 {displaystyle {ce {CO2}}} 在不同温度下的p-V 等温线,从中可以明显看出范氏方程对液化过程的模拟(注意:若用理想气体状态方程作上述模拟,得到的只是一系列双曲线,因为在等温条件下理想气体状态方程就退化为玻意耳-马略特定律——pV=常数)。 CO 2 {displaystyle {ce {CO2}}} 气体的临界温度为 T C = 31 {displaystyle T_{C}=31} °C = 304 {displaystyle =304} K。气体的临界状态参量 V C {displaystyle V_{C}} 、 p C {displaystyle p_{C}} 、 T C {displaystyle T_{C}} 和范德华常数 a {displaystyle a} 、 b {displaystyle b} 之间存在下列数学关系:我们可以利用这些关系通过测出气体的 T C {displaystyle T_{C}} 和对应的 p C {displaystyle p_{C}} 来得到 a {displaystyle a} 和 b {displaystyle b} 的值(由于测量上的困难,一般不使用 V C {displaystyle V_{C}} )。下面,我们不再考虑 v = V N {displaystyle v={frac {V}{N}}} ( N {displaystyle N} 为系统中的分子数),改为考虑总体体积 V {displaystyle V} 。状态方程并不能告诉我们系统的所有热力学参量。我们可以照搬上面推导范氏方程的思路,从理想气体的亥姆霍兹自由能表达式出发,推得下面的结论:式中 A {displaystyle A} 为亥姆霍兹自由能, c ^ v {displaystyle {hat {c}}_{v}} 是无量纲的定容热容, Φ {displaystyle Phi } 是待定的熵常数。上述方程将 A {displaystyle A} 用它的自然变量 V {displaystyle V} 和 T {displaystyle T} 表示,所以系统的所有热力学信息已全部知道。其力学状态方程就是前面导出的范氏方程系统的熵( S {displaystyle S} )由下式决定综合 A {displaystyle A} 和 S {displaystyle S} 的表达式,可由定义得到系统内能其他热力学势和化学势也可用类似的方程给出,但任何势函数若要用压强 P {displaystyle P} 表示都需要求解一个三阶多项式,使结果的形式变得很繁杂。所以,将焓和吉布斯能用它们相应的自然变量表示的结果都是复杂的(因为 P {displaystyle P} 是它们的自然变量之一)。虽然在一般形式的范氏方程中,常数 a {displaystyle a} 和 b {displaystyle b} 因气体/流体种类而异,但我们可以通过改变方程的形式,得到一种适用于所有气体/流体的普适形式。按照下面的方式定义约减变量(亦称折合变量,就是把变量转换成其无量纲形式),其中下标 R {displaystyle R} 表示约减变量,下标 C {displaystyle C} 表示原变量的临界值:式中 p C = a 27 b 2 {displaystyle p_{C}={frac {a}{27b^{2}}}} , v C = 3 b {displaystyle displaystyle {v_{C}=3b}} , k T C = 8 a 27 b {displaystyle kT_{C}={frac {8a}{27b}}} 。用约减变量代替原变量,范氏方程形式变为这就是范氏方程的不变形式,即这一形式不会因应用流体种类改变而改变。上述方程的不变性质亦称对应状态原理。在流体力学中,范氏方程可以作为可压缩流体(如液态高分子材料)的PVT状态方程。这种情况下,由于比容 V {displaystyle V} 变化不大,可将方程简化为:( p + A ) ( V − B ) = C T {displaystyle (p+A)(V-B)=CT,} ,其中 p {displaystyle p} 为压强, V {displaystyle V} 为比容, T {displaystyle T} 为温度, A {displaystyle A} 、 B {displaystyle B} 、 C {displaystyle C} 均为与对象相关的参数。

相关

  • 纳西尔丁·图西纳西尔丁·图西(Nasir al-Din al-Tusi),十三世纪波斯天文学家、数学家。生于图斯(今伊朗东部),早年在图斯和尼沙普尔学习,后来到伊斯梅利供职,曾受到蒙古统治者的重用。他是中世纪著
  • 类淀粉蛋白淀粉样物质(英语:amyloid)是一种不可溶的纤维性蛋白质,“淀粉样物质”,港澳台称为“类淀粉蛋白”。在器官中不正常的堆积,会造成类淀粉沉积症(amyloidosis)。在许多神经性疾病,如阿兹
  • 逆问题逆问题是一个关于如何将观测和测量的结果转换为物体或系统的信息的广义框架。比如,如果我们有一个关于地球重力场的测量结果,我们就会问:“利用现有的信息,我们能否得到地球的密
  • 烧瓶烧瓶是实验室中使用的有颈玻璃器皿,用来盛液体物质。因可以耐一定的热而被称作烧瓶。 在化学实验中,试剂量较大而又有液体物质参加反应时使用的容器。烧瓶都可用于装配气体发
  • 六边形在几何学中,六边形是指有六条边和六个顶点的多边形,其内角和为720度。六边形有很多种,其中对称性最高的是正六边形。正六边形是一种可以使用尺规作图的六边形,也可以拼满平面,因
  • 5f14 6d10 7s2 7p1(预测)2, 8, 18, 32, 32, 18, 3(预测)主条目:鿭的同位素鿭(Nihonium,Nh)鿭是一种人工合成化学元素,化学符号为Nh,原子序数为113。它具有极高的放射性,该元素最稳定的
  • 二十四节气节气指二十四时节和气候,是中国古代用来指导农事之历法历注。东亚传统夏历(农历)是一种“阴阳合历”,同时根据日、月运行制定,“阴”是以朔望月为基准确定,“阳”是以地球自冬至绕
  • 阿尤布时期阿尤布王朝(Ayyubid dynasty)为12世纪-13世纪统治埃及、叙利亚、也门的伊斯兰教王国。该王朝由库尔德人建立,全盛时期的版图延伸至圣城麦加与北伊拉克。由阿尤布、谢尔库赫兄弟
  • 美丽奈茨美丽奈茨(Merneith)古埃及早王朝时期第一王朝摄政。哲尔死后,她曾摄政。她的陵墓已在阿比多斯被发现,是按照国王规格建造的。
  • 501(c)条款国内税收法是美国国内税收法(Internal Revenue Code, IRC)中的一项条款(美国国内税收法, § 501(c)),本条款列出了26种享受联邦所得税 (federal Income tax)减免的非营利组织。具体