分子对称性

✍ dations ◷ 2025-10-10 13:17:49 #对称,理论化学

分子对称性描述分子的对称性表现并根据分子的对称性对分子作分类。分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和它的光谱学数据(以拉波特规则之类的选择定则为基础)。在大学程度的物理化学、量子化学与无机化学教科书中,都有关于对称性的章节。

在各种不同的分子对称性研究架构中,群论是一项主流。这个架构在分子轨域的对称性研究中也很有用,例如应用Hückel分子轨道法、配位场理论和Woodward-Hoffmann规则等。另一个规模较大的架构,是利用晶体系统来描述材料的晶体对称性。

实际测定分子的对称性有许多技术,包括X射线晶体学和各种形式的光谱。光谱学符号是以各种对称条件为基础。

分子对称性的研究是取自于数学上的群论。

分子对称性可分成5种对称元素。

这5种对称元素都有其对称操作。对称操作为了与对称元素作区别,通常但不绝对的,会加上脱字符号。所以Ĉn是一个分子绕轴旋转,而Ê为其恒等元素操作。一个对称元素可以有一个以上与它相关的对称操作。因为 C1 与 E、S1 与 σ 、 S2 与 相等,所有的对称操作都可以分成真转动或非真转动(proper or improper rotations)。

点群是一组对称操作 (symmetry operation),符合数论中群的定义,在群中的所有操作中至少有一个固定不变。三维空间中有32组这样的点群(英语:point groups in three dimensions),其中的30组与化学相关。 它们以向夫立符号为分类基础。

一个对称操作的集合组成一个群,with operator the application of the operations itself,当:

群的阶为该群中对称操作的数目。

例如,水分子的点群是 C2v,对称操作是 E, C2, σv 和 σv'。它的顺序为 4。每一个操作都是它本身的相反。 以一个例子做结,在一个σv反射后做再一个 C2旋转会是一个σv' 对称操作 (注意:"在 B后做 A操作形成 C 记作 BA = C"):

σv*C2 = σv'

下表为典型分子的点群列表。

对称操作可用许多方式表示。一个方便的表征是使用矩阵。在直角坐标系中,任一个向量代表一个点,将其以对称操作转换左乘(left-multiplying)得出新的点。结合操作则为矩阵的乘法: C2v 的例子如下:

像这样的表示虽然存在无限多个,但是群的不可约表示(或)被普遍使用,因为所有其他的群的表示可以被描述为一个不可约表示的线性组合。

对每个点群而言,一个特征表汇整了它的对称操作和它的不可约表示(irreducible representations)的资料。因为它总是与不可约表示的数量和对称操作的分类相等,所以表格都是正方形。

表格本身包含了当使用一个特定的对称操作时,特定的不可约表示如何转换的特征。在一个分子点群中的任一作用于分子本身的对称操作,将不会改变分子点群。但作用于一般实体,例如一个向量或一个轨域,这方面的需求并非如此。矢量可以改变符号或方向,轨域可以改变类型。对于简单的点群,值不是 1 就是 −1:1表示符号或相位(矢量或轨域)在对称操作的作用下是不变的(对称),而 −1表示符号变成(不对称)

根据下列的规定标示表征:

表中还记录如下的资料:笛卡尔矢量及其如何旋转,和它的二次方程的如何用群的对称操作来转换,特别是以相同方法转换不可约表示。这些资料一般显示在表格的右边。这些资料是有用的,因为分子中的化学重要轨道(特别是和轨道)具有相同的对称性。

下表为C2v对称点群特征表:

承接C2v的例子,考虑水分子中氧原子的轨域:2x垂直于分子平面,且以一个 C2 与一个 σv'(yz) 操作改变符号,但与其他两个操作仍保持不变(显而易见的,恒等操作的特征恒为+1)。因此这个轨域的特征集合为( 1, −1, 1, −1),与B1不可约表示相符合。同样地,2z轨域被认为有A1不可约表示的对称性, 2y B2,和 3xy轨域 A2。这些分配和其他的都在表格最右边的两个字段中注明。

1929年时,汉斯·贝特在他的配位场理论研究中使用点群操作来作描述,尤金·维格纳则使用群论解释分子振动。拉斯洛·蒂萨(英语:László Tisza)(1933)整理出第一个特征表,之后再加入振动光谱。罗伯特·S·马利肯为第一个将特征表以英文发表的人(1933),埃德加·布莱特·威尔逊(英语:Edgar Bright Wilson)在1934年用它来预测振动的简正波的对称性。 Rosenthal与Murphy在1936年发表32点群的完整集合。

相关

  • 螯合物螯合物(英语:Chelation)是配合物的一种,在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与中心体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大
  • 失乐失乐(英语:Anhedonia)是指对原本能够带来快乐的活动(爱好、社交、交媾等)失去兴趣的现象。虽然早期对于失乐的定义强调“快感”,近年来人们更多地强调需要考虑这些快感行为的其他
  • 毛利齐奥·波里尼毛利齐奥·波里尼(意大利语:Maurizio Pollini,1942年1月5日-),意大利钢琴家。毛利齐奥·波里尼生于米兰,其父为理性主义建筑学家基诺·波里尼(意大利语:Gino Pollini),曾先后师从卡洛·
  • 刚勇者埃德蒙埃德蒙二世(Edmund II,988年-1016年11月30日),绰号刚勇者(Ironside),是埃塞尔雷德之子,1016年4月23日到11月30日的英格兰国王。刚勇者的绰号,来自他对丹麦克努特大帝的反抗。1012年,丹
  • 王会军王会军(1964年1月-),中国大气科学家。出生于黑龙江的一个乡村,1986年于北京大学地球物理系毕业,1991年获中国科学院大气物理研究所博士学位,留所做研究。1996年成为研究员。2001年
  • 第一型和第二型误差第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误为统计学中推论统计学的名词。在假设检验中,有一种假设称为“零假设(虚无假设)”;假设检验的目的是利
  • 杉林杉林区(台湾客家语南四县腔:cam limˇ ki/cam naˇ kiˊ)位于台湾高雄市东北半叶西南部,北接甲仙区,东连六龟区,南接美浓区、旗山区,西邻内门区,西北连台南市南化区。清光绪27年以前,
  • 涡量涡量,也称为涡度,是一个流体力学的概念,用以描述流体的旋转情况。数学上,涡度 ζ {\displaystyle \zeta } 是描述速度场
  • 硫胺素缺乏症脚气病是一种由缺乏维生素B1引起的疾病,病症包括体重下降,精神萎靡,感官功能衰退,体虚,间歇性心律失常。西方诸语言中的脚气病多为Beriberi一词,它是由僧伽罗语引用过来,在僧伽罗语
  • 拜音达里拜音达里(满语:ᠪᠠᡳᠨᡩᠠᡵᡳ,转写:Baindari,16世纪?-1607年),纳喇氏,末代辉发贝勒。拜音达里是辉发贝勒王机褚之孙,其父早逝。王机褚病逝后,拜音达里杀其叔七人自立为贝勒。万历二十