折光度

✍ dations ◷ 2025-10-10 01:56:15 #折光度
介质的折射率 n {displaystyle n} 等于“光在真空中的速度( c {displaystyle c} )”跟“光在介质中的相速度( v {displaystyle v} )”之比,即:比如水的折射率是1.33。表示光在真空中的传播速度是在水中传播速度的1.33倍。折射率决定了进入材料时光的路径弯曲或折射的程度。这是通过描述斯涅耳定律折射, n 1 sin ⁡ θ 1 = n 2 sin ⁡ θ 2 {displaystyle n_{1}sin theta _{1}=n_{2}sin theta _{2}} ,其中 θ 1 {displaystyle theta _{1}} 和 θ 2 {displaystyle theta _{2}} 是入射角和折射角,分别射线穿越折射率的两种介质之间的界面的, n 1 {displaystyle n_{1}} 和 n 2 {displaystyle n_{2}} 。折射率还决定了反射的光量到达界面时,以及全内反射和布鲁斯特角的临界角。折射率可以看作是辐射的速度和波长相对于它们的真空值减小的因素:介质中的光速是 v = c n {displaystyle v={frac {c}{n}}} ,并且类似地,该介质中的波长是 λ = λ o n {displaystyle lambda ={frac {lambda _{o}}{n}}} ,其中 λ o {displaystyle lambda _{o}} 是真空中的光的波长。这意味着真空的折射率为1,频率( f = c λ o {displaystyle f={frac {c}{lambda _{o}}}} )不受折射率的影响。结果,取决于频率的人眼折射光的感知颜色不受介质的折射或折射率的影响。虽然折射率影响波长,但它取决于频率,颜色和能量,因此弯曲角度的所得差异导致白光分裂成其组成颜色。这称为分散。可以在棱镜和彩虹中观察到,并且在透镜中可以观察到色差。吸收材料中的光传播可以使用复值的折射率来描述。然后虚部处理衰减,而实部则解释折射。折射率的概念适用于从X射线到无线电波的全电磁波谱。它也可以应用于声音等波动现象。在这种情况下,使用声速代替光的速度,并且必须选择除真空之外的参考介质。历史上,折射率最早出现在折射定律(斯涅尔定律)中, n 1 sin ⁡ θ 1 = n 2 sin ⁡ θ 2 {displaystyle n_{1}sin theta _{1}=n_{2}sin theta _{2}} 。其中, θ 1 {displaystyle theta _{1}} 与 θ 2 {displaystyle theta _{2}} 分别是光在介质界面上的入射角和折射角,两种介质的折射率分别是 n 1 {displaystyle n_{1}} 与 n 2 {displaystyle n_{2}} 。水波的相对折射率,B水区相对于A水区的折射率,记为 n AB {displaystyle n_{text{AB}}} 。若A、B两区发生水波的折射,不论是水波由A区折射到B区,或是B曲折射到A区。此时,在A区的水波波前与交界面夹角为 θ A {displaystyle theta _{text{A}}} ,而在B区的水波波前与交界面夹角为 θ B {displaystyle theta _{text{B}}} ,则 n AB {displaystyle n_{text{AB}}} 定义如下:n AB = v A v B = sin ⁡ θ A sin ⁡ θ B = n B n A {displaystyle n_{text{AB}}={frac {v_{text{A}}}{v_{text{B}}}}={frac {sin theta _{text{A}}}{sin theta _{text{B}}}}={frac {n_{text{B}}}{n_{text{A}}}}}双折射材料的折射率,取决于光的偏振和传播方向。在相同介质中,不同的波长的光,因为行进速度不同,造成在折射过程中偏折角度不同,其折射率 n ( λ ) {displaystyle n(lambda )} 也不同,这叫做光色散。折射率与波长或者频率的关系称为光的色散关系。常用的折射率有:n = A + B λ 2 + C λ 4 {displaystyle n=A+{frac {B}{lambda ^{2}}}+{frac {C}{lambda ^{4}}}}n = A + B λ + C λ 3.5 {displaystyle n=A+{frac {B}{lambda }}+{frac {C}{lambda ^{3.5}}}}n = A + B ∗ λ 2 + C λ 2 − δ 2 + C ( λ 2 − δ 2 ) 2 {displaystyle n=A+B*lambda ^{2}+{frac {C}{lambda ^{2}-delta ^{2}}}+{frac {C}{(lambda ^{2}-delta ^{2})^{2}}}}n = A + B λ + C λ 2 + D λ 4 + E λ 6 + F λ 8 {displaystyle n=A+{frac {B}{lambda }}+{frac {C}{lambda ^{2}}}+{frac {D}{lambda ^{4}}}+{frac {E}{lambda ^{6}}}+{frac {F}{lambda ^{8}}}}N 2 − 1 = A ⋅ λ 2 λ 2 − D + B ⋅ λ 2 λ 2 − E + C ⋅ λ 2 λ 2 − F {displaystyle N^{2}-1={frac {Acdot lambda ^{2}}{lambda ^{2}-D}}+{frac {Bcdot lambda ^{2}}{lambda ^{2}-E}}+{frac {Ccdot lambda ^{2}}{lambda ^{2}-F}}}另外不透明的物体的折射率也是可以测量的,在图形学中,可以使用不同的折射率来渲染金属或者塑料这样的不同的反射效果。n ~ = n + i κ {displaystyle {tilde {n}}=n+ikappa } 复折射率的实部即为寻常的折射率,而虚部则称为消光系数(extinction coefficient),表示电磁波进入材料后的衰减量。

相关

  • 喘鸣喘鸣(英语:Wheeze, Sibilant Rhonchi),又称啰音,是指呼吸过程中呼吸道持续产生的粗糙声音。哮鸣发生的原因是由于呼吸道的某些部分缩小或被堵塞,亦可能是呼吸道内的气流速度提高。
  • 坎地沙坦坎地沙坦(英语:Candesartan、发音为/ˌkændɨˈsɑrtən/,rINN)是一款血管紧张素II受体拮抗剂药物,多用于治疗高血压症。前体药物坎地沙坦酯是日本武田制药公司率先研制,后阿斯利
  • 机率概率,旧称几率,又称机率、机会率或或然率,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。概率常用来量化对于某些不确定命题的想法,命题一般会
  • Species+《濒危野生动植物物种国际贸易公约》(英语:Convention on International Trade in Endangered Species of Wild Fauna and Flora,缩写:CITES)是一个在1963年时由“国际自然与天然
  • 公共浴场在古罗马,公共浴场(拉丁语:thermae,源自古希腊语的“thermos”,意为“热”;或balnea,古希腊语为“βαλανείον”)是常见的建筑,为市民提供洗浴的去处。“thermae”更偏指大型
  • 拉克坦提乌斯拉克坦提乌斯(拉丁语:Lactantius,240年-320年)。古罗马基督教作家之一,曾于古罗马高层中供职。他著有大量解释基督教的作品,博采众长,富于变化。在文艺复兴时期仍具有广泛影响力,被后
  • 心血管病心血管疾病(英语:cardiovascular disease,簡稱CVD)指的是关于心脏或血管的疾病,又称为循环系统疾病、循环系统疾病。常见的心血管疾病包括冠状动脉症候群、中风、高血压性心脏病(
  • 阿米巴变形虫变形虫,拉丁文为Amoeba,中文音译为阿米巴,所以也叫做阿米巴原虫、阿米巴变形虫或阿米巴虫或称食脑虫(透过感染鼻腔而进入脑部感染的死亡率高达九成)。是一种单细胞原生动物,仅由一
  • 扫描隧道显微镜扫描隧道显微镜(英语:Scanning Tunneling Microscope,缩写为STM),是一种利用量子隧穿效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁及海因里希·罗雷尔在IBM位于瑞士苏
  • 兰学家兰学指的是日本江户时代经荷兰人传入日本的学术、文化、技术的总称,字面意思为荷兰学术,引申可解释为西洋学术(简称洋学)。兰学是一种透过与出岛的荷人交流而由日本人发展而成的