光线转换矩阵分析

✍ dations ◷ 2025-10-13 03:59:15 #几何光学,加速器物理学

光线转换矩阵分析(又称ABCD矩阵分析),是用于某些光学系统,特别是激光领域的一种光线追踪技术。它包含一个描述光学系统的光线转化矩阵(ray transfer matrix),这个矩阵与一代表光线的向量相乘之后,可以得到光线在该系统中的运行轨迹。这类的分析也被应用于加速器物理(accelerator physics)中,用以追踪通过粒子加速器中磁铁装置的粒子,详情请见电子光学。

以下介绍的技术使用了近轴逼近法,此逼近法意即假设所有光线相对于系统的光轴(optical axis)都处于小角度(θ为径度)、短距离(x)。

光线追踪技术以两个平面为参考面, 分别为输入平面与输出平面, 这两个平面均垂直于系统的光轴。此外,为了理论的一般性,我们定义系统的光轴即直角坐标系的z轴。一光线与输入面呈θ1,从距离光轴 1 的入射面进入系统,并在距光轴的2的输出面呈θ2射出,而1, 2分别是在输入面与输出面中介质的折射率。

这些参数可表成下列关系式:

这个关系式以光线转化矩阵(RTM, M)将光线向量与输入、输出面互相连结,M代表的是在这两个平面之间的光学系统。根据折射定律与几何关系,可以证明RTM行列式值(determinant)即是两个折射率的比值。

因此,若是输入面与输出面在同一个介质中,或是在具有同一个折射率的不同介质中,M等于1,相似的技术可以应用于电路学上,见二埠网络。

若两个面中有空间存在,光线转换矩阵可以表示成:

其中d表示两参考平面的距离(沿着光轴测量),此矩阵有下列关系:

两光线各别的参数可表示如下:

另一个范例为一薄透镜,其光线转画矩阵为:

其中f为透镜的焦距。若遇表示依复合光学系统,光线转化矩阵可以交互相乘,形成一总括光线转化矩阵,以下范例唯为一长度为d的空间与薄透镜的复合系统:

注意,矩阵的乘法并没有交换率,因此下面的系统先为一薄透镜,后为一空间。

因此,矩阵必须照顺序排好。不同的矩阵可以代表不同折射率的介质,或者是面镜的反射等等。

简易的光学元素

2 为折射后的环境折射率

1 为入射时的环境折射率
2 为折射后的环境折射率

唯有在焦距远大于透镜厚度时成立

2 为透镜内的折射率
1 为第一表面的曲率半径
2 为第二表面的曲率半径
为透镜的中心厚度

RTM在模拟光学共振系统的时候特别有用,像是激光。在最简单的情况下由两个完全相同,具100%反射率、曲率半径R相互距离为d的面镜组成。为了达到光学追踪的目的,上述的系统可以等同于由一系列焦距为R/2,彼此间的距离为d的薄透镜所组成的系统,此结构又被称为a lens equivalent duct或lens equivalent waveguide. 上述系统每一个波导下的RTM如下:

光学转化矩阵分析此时就可以决定一个波导的稳定性(等同于共振器),意即RTM可以找出光可以周期性地再聚焦,并待在波导内的状况。我们可以找到系统中所有光的”eigenrays”,入射向量在每个mentioned sections的波导乘上一个实数或是复数的 λ 将会等于1。 使得:

此为一本征方程式:

其中I为一2x2单位矩阵。我们可以进一步计算此转化矩阵的本征值:

可导出以下特征方程式:

其中

是RTM的轨迹,且

是RTM行列式值的倒数,带入消去后我们可以得到:

其中

是稳定参数。本征值是本征方程式的解,由一元二次方程式可以解出:

现在,考虑一个光线通过系统N次:

如果此波导是稳定的,所有的光都不会被随意的引道到偏离主轴很远的地方,意即λN必须是有限的。吾人假设g2>1,则两本征值均为实数,又因为λ+λ- = 1 ,因此其中一个的绝对值必须大于1,这也暗示了代表本征向量的光线不会收敛。因此在依稳定的波导中,g2≤1,以及本征值可以用复数形式表示:

以g=cos(φ)表示。

假设 g 2 < 1 {\displaystyle g^{2}<1} r + {\displaystyle r_{+}} , r {\displaystyle r_{-}} λ + {\displaystyle \lambda _{+}} , λ {\displaystyle \lambda _{-}} 的本征向量,此两向量横跨所有向量空间,因为他们是正交因此输入的向量可以被表示成:

c + {\displaystyle c_{+}} and c {\displaystyle c_{-}} 为某常数

再通过N个波导后,输出则为:

这代表一个周期函数。

光线转化矩阵的建立也可以用于描述高斯光束(Gaussian beams),若有一高斯光束波长为λ0,曲率半径为R,光点大小w,折射率n,我们可以定义出一复数光束参数(complex beam parameter) q:

此光束可以转移至一具有下列光线转化矩阵的光学系统:

其中k为标准化常数,此常数可以让光束向量的第二个成分为1,利用矩阵乘法:

由上式除以下式可得:

此方程式常以倒数形式表示:

假设一光束通过一距离为d的空间,光线转化矩阵为: = {\displaystyle {\begin{bmatrix}A&B\\C&D\end{bmatrix}}={\begin{bmatrix}1&d\\0&1\end{bmatrix}}} .因此

这表示,通过一空间会增加半径d。

假设一光束通过一焦距为f的薄透镜,光线转化矩阵为:

因此

再次强调,只有q的实部会被影响,曲率半径会减少1/f。

相关

  • 齿颚矫正学齿颚矫正学(Orthodontics)是牙医学的一门专科,是研究牙齿咬合不正,又称错咬(Malocclusion)的治疗方法与学问。牙齿咬合不正其原因可能因为牙齿天生不规则生长或是后天错误咬合与上
  • 拇指拇指,又称大拇指,是第一只手指,也是五个指头中最强壮的一个,长度与小指相若。
  • γ-干扰素1EKU, 1FG9, 1FYH, 1HIG, 3BES· extracellular space· negative regulation of transcription from RNA polymerase II promoter · neutrophil apoptotic process · r
  • 叶军叶军(1967年11月-),浙江绍兴人,美籍华裔物理学家,美国国家科学院院士。1985-1989年就读于上海交通大学物理系,获得物理学学士学位,1997于美国科罗拉多大学获得物理学博士学位。1999
  • 肿瘤伴生症候群肿瘤伴随症候群指身体因为肿瘤生长引起在荷尔蒙、神经系统、血液,生化平衡等方面出现紊乱的临床症状。通常有下列几类:
  • 宪法监督委员会保守派控制:宪法监护委员会(波斯语:شورای نگهبان قانون اساسی‎)是伊朗由6名乌理玛(伊斯兰教神学者或神职人员)和6名律师组成的集行政、立法、司法职责于一
  • 熙嫔洪氏熙嫔洪氏(韩文:희빈 홍씨,1494年-1581年),本贯南阳,是朝鲜王朝中宗的后宫嫔御身份进宫的。父亲是中宗反正的一等功臣南阳君洪景舟;母亲贞敬夫人权氏是建功将军权金成的女儿,亦是领议
  • 非洲民族联盟-爱国阵线津巴布韦非洲民族联盟-爱国阵线(英语:Zimbabwe African National Union – Patriotic Front,缩写为ZANU–PF)是津巴布韦在1980年获得独立后的执政党,其创始人为罗伯特·穆加贝和约
  • 德加尔人越南高地民族(Degar,法语:Montagnard,越南语:người Thượng/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B
  • 李嘉图经济学李嘉图出生于1772年,后来靠做证券经纪人和贷款经纪人致富。 在27岁时,他读了亚当斯密的,并被当中的经济学原理所激发。他的主要经济学思想都集中在1817年出版的政治经济学和税