决策论

✍ dations ◷ 2025-07-21 16:04:07 #决策论

决策论是一个交叉学科,和数学、统计、经济学、哲学、管理和心理学相关。它主要研究实际决策者如何进行决策,以及如何达到最优决策。

决策论和博弈论关系密切;二者的区别是,决策论研究个人行为选择,而博弈论主要关注多个决策者之间选择的相互关系。这一领域的实证研究大多采用统计或计量经济学的方法。

大多数的决策理论是规范性的,即决策理论以假设一个具有完全信息的、可实现精度计算的、并且完全理性的理想决策者的方式达到最优的决策(在实际中,某些所谓“最好”的情景并不是最大,最优也可能包含在一个具体的或近似的最大值)。这种规范模型的实际应用(人们应当如何决策)被称为决策分析,其目标是帮助人们进行进一步良好决策的工具和方法论。决策支持系统是一种系统的、综合的用这种方法开发的软件工具。

由于人们通常的行为并不与公理一致,经常违反了其最优性。关于这种现象的相关研究称为描述性学科。这种描述性的模型试图描述实际中人们是怎么做的。由于规范和最优的决策通常测试假设是违背人们的实际行动,因此规范性模型和描述性模型建立了关联。对实践中发生决策允许进行进一步的测试,可能会放松规范模型中对完全信息、理性和其他方法的约束。最近几十年,越来越多的研究者对被称为“行为决策论”的引发兴趣,这种研究对重新评价理性决策理论的要求做出了贡献。

启发式是决策方法之一。启发式方法使得决策基于常规思维。虽然这比一步一步处理快,启发式决策可能导致出现错误的风险。通过一步一步的加工而避免的错误可能会出现。一个常见的和不正确的认识是认为启发式思维的结果是赌徒的谬论。赌徒谬论是错误地相信一个随机事件受到之前的随机事件的影响。例如,有百分之五十的概率使一枚硬币出现正面。赌徒谬误的表明,如果硬币出现反面,下次它翻转,出现正面。这是完全不正确的。这种谬论通过一步一步进行思考的过程也很难反正。然而,这样的谬论也可能符合贝叶斯模型的思维,其中投掷的硬币的实际概率并不确定,只是以以往投掷的硬币的可能来改变之前的概率可能推断出一个可能的概率范围。考虑到贝叶斯理论的在统计学中的最高的地位,在这种情境下赌徒谬论是非常合理的,更多的证据表明,实效性统计频率论的假设的并不能现实的准确模型。

一些统计工具对于决策过程中的信息收集,风险估计是非常有帮助的。人们可以计算第一类错误和第二类错误发生的概率,从而正确的评估风险损失,做出更好的理性选择。

下面这个例子说明了在审判过程中的决策过程:

相关

  • 5f14 6d7 7s2(计算值)2, 8, 18, 32, 32, 15, 2(预测)第一:800.8(估值) kJ·mol−1 第二:1823.6(估值) kJ·mol−1 第三:2904.2(估值) kJ·mol−1 (主条目:鿏的同位素鿏(Meitnerium)是人工
  • 时钟周期时间脉冲信号(英语:Clock signal),计算机科学及相关领域用语。此信号在同步电路当中,扮演计时器的角色,并组成电路的电子组件。只有当同步信号到达时,相关的触发器才按输入信号改变
  • 加那利凉流加那利洋流(Canary Current),或称为加那利凉流,为一个北大西洋漂流向南分支出来的洋流,并且向西南流动远至塞内加尔而且亦在此处转往西流。加那利洋流把水面下有丰富养分的水带向
  • 三条实美三条实美(日语:三条 実美〔三條 實美〕/さんじょう さねとみ Sanjō Sanetomi,1837年3月13日-1891年2月18日),日本政治家,公卿出身,日本最后一任太政大臣。父为内大臣三条实万。他是
  • 波动波或波动是扰动或物理信息在空间上传播的一种物理现象,扰动的形式任意,传递路径上的其他介质也作同一形式振动,但不会传递介质。波的传播速度总是有限的。除了电磁波、引力波(又
  • 北京联合大学北京联合大学,简称北京联大,为市属普通高等院校。校本部位于北京市朝阳区北四环路的小营,众多的学院则散布在北京的海淀区、丰台区、昌平区、平谷区、西城区、及河北省廊坊市东
  • 中华民国总统直选列表公元1996年3月20日,中华民国在台湾举行了历史上第一次的正副总统直选。自此开始,每隔四年例行举办适用《中华民国宪法增修条文》的总统直接选举。下方就至目前为止的总统直选
  • 太平洋海军陆战队美国太平洋海军陆战队(United States Marine Corps Forces, Pacific),隶属于美国太平洋司令部。它是美国海军陆战队中规模最大的部队。总部位于夏威夷瓦胡岛H·M·史密斯军营,它
  • 阿布哈兹阿沙阿沙(阿布哈兹语:аҧсар, āpsār)是阿布哈兹共和国的一种货币。从2008年开始发行,1、10、25、50和100阿沙面额的硬币陆续发行,他们虽是阿布哈兹共和国的法定货币,但其使用非
  • 罗伊·哈罗德亨利·罗伊·福比士·哈罗德爵士(英语:Henry Roy Forbes Harrod,1900年2月13日-1987年3月8日),又译为洛伊·哈罗德,生于英国英格兰伦敦,经济学家,属于凯恩斯学派,曾提出哈罗德-多马模