π介子

✍ dations ◷ 2025-10-11 23:39:36 #π介子
π±:2.6×10-8s π在粒子物理学中,π介子是以下三种亚原子粒子之一:π+、π0和π−。π介子是最重要的介子之一,在揭示强核力的低能量特性中起着重要的作用。π介子拥有0自旋,由第一代夸克组成。在夸克模型中,一个上夸克和一个反下夸克构成一个π+,一个下夸克和一个反上夸克构成一个π−,它们互为反粒子。中性的组合——上夸克和反上夸克、下夸克和反下夸克组成π0,它们拥有相同的量子数,因而只能在叠加中出现。最低能量的叠加是π0,它的反粒子就是自己。π±介子拥有139.6MeV/c2的质量,和2.6×10-8s的平均寿命。它们因弱作用而衰变。主要的衰变形式(占99.9877%)是纯轻子型衰变,变成一个μ子和一个μ中微子。第二种衰变模式(占0.0123%)是衰变成一个电子和一个电中微子。(由欧洲核子研究组织在1958年发现)μM子型衰变对电子型衰变的抑制作用的系数大约是R π = ( m e / m μ ) 2 ( M π 2 − M e 2 M π 2 − M μ 2 ) 2 {displaystyle R_{pi }=(m_{e}/m_{mu })^{2}left({frac {M_{pi }^{2}-M_{e}^{2}}{M_{pi }^{2}-M_{mu }^{2}}}right)^{2}}这是一种自旋效应,称为螺旋抑制。除了纯轻子型衰变,还有一种由结构决定的放射性轻子型衰变。这种β衰变非常少见(几率大约是10−8),最终生成一个中性π介子。π0介子的质量稍小,是135.0 MeV/c2,平均寿命则短得多,是8.4×10-17 s。它的衰变是由于电磁力的作用。它的主要衰变形式(占98.798%)是衰变成两个光子。它的第二种衰变方式(占1.198%)——达利茨衰变是衰变成一个光子和一对电子、正电子。π介子衰变的几率在粒子物理学的分支,如手征微扰理论中非常重要。这个比率可由π介子衰变常量(ƒπ)表示,大约是90 MeV。(>5%)^ 由于夸克质量非零而不准确。汤川秀树在1935年的理论工作预测到了存在携带强核力的介子。在核力的作用范围内(猜想是原子核的半径),汤川秀树预测这种粒子的质量约为100 MeV/c²。紧接着,在1936年发现了μ子之后,人们曾认为这就是汤川秀树预测的粒子——它的质量是106 MeV/c²。但是,接下来的实验表明,μ子并不参与强核力的作用。用现在的术语来讲,μ子是一种轻子,而非介子。在1947年第一个真正的介子——带电的π介子在塞西尔·鲍威尔、塞萨尔·拉特斯和朱塞佩·奥基亚利尼的合作下在布里斯托尔大学被发现。由于粒子加速器尚未诞生,高能量只能来自于大气中的宇宙射线。研究者在很长一段时间之内都需要把感光乳胶放在海拔很高的地方(最初在比利牛斯山的南日比戈尔峰,后来搬到了安第斯山的卡考塔亚峰),以让它暴露在高能射线中。在覆盖好这些实验品之后,研究者通过显微镜观察到了带电粒子的踪影。π介子最初被它们异常的“双介子”特性而被确认——它们衰变成另一种“介子”(μ子)。1948年,拉特斯和尤金·加德纳采用加利福尼亚大学伯克利分校的粒子加速器,用α粒子轰击碳原子,成功地人造出π介子1949年,汤川秀树因成功预测π介子而获得诺贝尔物理学奖。次年,鲍威尔因发展了采用感光乳胶确定粒子的方法也获得了同一奖项。由于不带电,中性π介子相对带电的π介子来说很难发现:它在感光乳胶上没有痕迹。它的存在是由它的衰变产物证明的——因此它被称为电子和光子的“软结合”。π0的衰变产物——2个光子在1950年被伯克利的加速器确认;同年英国布里斯托尔大学在宇宙射线气球实验中也发现了它。π介子在宇宙论中也为宇宙射线能量增加了上限——GZK极限。根据现代物理学对强相互作用的解释(量子色动力学),π介子被认为是手征对称性破缺的戈德斯通玻色子的对应粒子。这解释了π介子轻于其他介子(如η'介子,958 MeV/c²)的原因。根据戈德斯通定理的预测,如果构成它们的夸克没有质量(符合手征对称性),那么π介子的质量就为零。但是夸克实际上有一点质量,因此π介子质量也不大。一些公共单位发现了π介子在辐射疗法上的作用。这些单位包括洛斯阿拉莫斯国家实验室——它用这种疗法在1974年至1981年间治疗了228位病人。

相关

  • 肿瘤标志物癌症标志物(英语:Cancer biomarkers)是指由肿瘤细胞直接产生或由非肿瘤细胞经肿瘤细胞诱导产生的物质。对于肿瘤标志物的检测可对肿瘤存在、发病过程及预后作出判断。癌症标志
  • 全身性发炎反应症候群全身炎症反应综合症(Systemic inflammatory response syndrome ,SIRS)是一个影响到整个身体的炎症反应。它是身体的应激性反应,是机体应对一种感染性或非感染性因素的方式。虽
  • 连接组学连接组学(Connectomics)绘制与研究神经连接组(connectome):这是一种刻画有机体神经系统(尤其是脑和眼)的连接方式的完整线路图。由于这些结构极其复杂,高效筛选的神经成像和组织学方
  • 金泽医科大学なす紺各学域人間社会学域理工学域金泽大学(日语:金沢大學/かなざわだいがく Kanazawa daigaku;英语译名:Kanazawa University),简称金大(きんだい),是一所本部位于石川县金泽市的日
  • 细弱密螺旋体细弱螺旋体(Treponema pertenue,或称雅司螺旋体)是属于密螺旋体科密螺旋体属的细菌。是引起雅司病(Yaws)的病原体。2008年1月15日,一项利用细弱螺旋体所进行的遗传学研究,发现了支
  • 副睾副睾(Epididymis)是一个多数曲折、细小的管子构成的器官,一面连接着输精管(Ductus deferens),一面连接着睾丸(Testis)的曲细精管。当精子离开睾丸时,就跑到副睾里,继续生长成熟
  • 赎罪节赎罪日(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey A
  • OCLC联机计算机图书馆中心(OCLC,全称:Online Computer Library Center,或译在线电脑图书馆中心、在线计算机图书馆中心)创建于1967年,最初名为俄亥俄学院图书馆中心(Ohio College Libra
  • 印度哲学印度哲学已具有近三千年的历史。印度哲学的发展可分为三个基本时期:在第一个时期,哲学思想逐渐从记录在人类最古老的文献—吠陀里的神话观念中分化出来。这一过程最集中地表现
  • 永仓新八永仓 新八( 1839年5月23日-1915年1月5日)新选组第二队队长,剑术师范,幼名荣吉、荣治。讳载之(のりゆき)。原籍松前藩(今北海道松前郡),为担任松前藩江户定府代理永仓勘次的次男。弘