倒频谱

✍ dations ◷ 2025-07-09 13:39:35 #信号处理

倒频谱(cepstrum),顾名思义,就是将频谱(spectrum)的英文前四个字母反过来写。倒频谱是为了某些时候,为了计算方便,将原来信号的频谱先转成类似分贝的单位,再作逆傅里叶变换,把它视为一种新的信号做处理。倒频谱有复数倒频谱,及实数倒频谱。

倒频谱被定义在1963的论文(Bogert等)。定义如下:

复数倒频谱拥有频谱大小跟相位的信息,实数倒频谱只有频谱大小的信息,各有各的不同应用。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
其中 X ^ = log | X ( F ) | + j arg {\displaystyle {\widehat {X}}\left=\log |X(F)|+j\arg}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }
2. arg ] {\displaystyle \arg]} 有无限多的解
当输入是实数时,因为 log | X ( F ) | {\displaystyle \log |X(F)|} 偶对称, arg {\displaystyle \arg} 奇对称,所以复数倒频谱的值为实数

C = 1 2 1 2 log | X ( F ) | e j 2 π F n d F {\displaystyle C\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}\log |X(F)|e^{j{2\pi }Fn}dF}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }

频谱图上的独立变数是频率,而倒频谱图上的独立变数为倒频率(quefrency),倒频率是一种时间的度量单位。举个例子,声音信号采样速率等于44100赫兹,在倒频谱上有个很大的值在倒频率等于100,代表实际上在44100/100=441赫兹有很大的值,这值出现在倒频谱上因为频谱上周期性出现,而频谱上出现的周期与倒频谱很大的值出现的位置有关。

滤波器(filter)常使用在频谱上,用来保存或删除我们所要或不要的信息,经过上面的许多讨论,不难猜到,倒滤波器(lifter)就是在倒频谱上所使用的滤波器。低通的倒滤波器跟低通滤波器有点类似,它可以借由在倒频谱上乘以一个window系数,使倒频谱上的高倒频率被压抑,如此依来,当信号转回时域空间时会变成一个较平滑的信号。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
问题: X ^ ( F ) {\displaystyle {\widehat {X}}\left(F\right)} 可能会无限大, 且对于arg(x)有无限多个解

先对信号做Z变换, 并整理一下系数, 让他变成下面的形式
X ( Z ) = A Z r k = 1 m i ( 1 a k Z 1 ) k = 1 m 0 ( 1 b k Z ) k = 1 P i ( 1 c k Z 1 ) k = 1 P 0 ( 1 d k Z ) {\displaystyle X\left(Z\right)={\cfrac {A{Z^{r}}\prod _{k=1}^{m_{i}}(1-{a_{k}}{Z^{-1}})\prod _{k=1}^{m_{0}}(1-{b_{k}}Z)}{\prod _{k=1}^{P_{i}}(1-{c_{k}}{Z^{-1}})\prod _{k=1}^{P_{0}}(1-{d_{k}}Z)}}}
其中 | a k | , | b k | , | c k | , | d k | 1 {\displaystyle \left|a_{k}\right|,\left|b_{k}\right|,\left|c_{k}\right|,\left|d_{k}\right|\leq 1}

分子:
第一项A是系数
第二项 Z r {\displaystyle Z^{r}} 是延迟
第三项是位于单位圆内的零点
第四项是位于单位圆外的零点

分母:
第一项是位于单位圆内的极点
第二项是位于单位圆外的极点

X ( Z ) {\displaystyle X\left(Z\right)} 取log变成 X ^ ( Z ) {\displaystyle {\widehat {X}}\left(Z\right)}
X ^ ( Z ) = l o g X ( Z ) = log A + r log Z + k = 1 m i log ( 1 a k Z 1 ) + k = 1 m 0 log ( 1 b k Z ) k = 1 P i log ( 1 c k Z 1 ) k = 1 P 0 log ( 1 d k Z ) {\displaystyle {\widehat {X}}\left(Z\right)=logX\left(Z\right)=\log A+r\log Z+\sum _{k=1}^{m_{i}}\log(1-{a_{k}}{Z^{-1}})+\sum _{k=1}^{m_{0}}\log(1-{b_{k}}Z)-\sum _{k=1}^{P_{i}}\log(1-{c_{k}}{Z^{-1}})-\sum _{k=1}^{P_{0}}\log(1-{d_{k}}Z)}
假设r=0, 因为这只是延迟, 并不会破坏波形
根据Z变换所得到的系数, 我们可以利用泰勒展开得到Z的反变换
x ^ = { log A if  n = 0 k = 1 m i a k n n + k = 1 P i c k n n if  n > 0 k = 1 m 0 b k n n k = 1 P 0 d k n n if  n < 0 {\displaystyle {\widehat {x}}\left={\begin{cases}\log A&{\mbox{if }}n=0\\-\sum _{k=1}^{m_{i}}{\cfrac {{a_{k}}^{n}}{n}}+\sum _{k=1}^{P_{i}}{\cfrac {{c_{k}}^{n}}{n}}&{\mbox{if }}n>0\\\sum _{k=1}^{m_{0}}{\cfrac {{b_{k}}^{-n}}{n}}-\sum _{k=1}^{P_{0}}{\cfrac {{d_{k}}^{-n}}{n}}&{\mbox{if }}n<0\end{cases}}}

注意事项
1. x ^ {\displaystyle {\widehat {x}}\left} 总是IIR(无限冲激响应)
2.对于FIR(有限冲激响应)的情况, c k = 0 , d k = 0 {\displaystyle c_{k}=0,d_{k}=0}

Z X ^ ( Z ) = Z X ( Z ) X ( Z ) {\displaystyle Z\cdot {\widehat {X}}'\left(Z\right)=Z\cdot {\cfrac {{X}'\left(Z\right)}{{X}\left(Z\right)}}}
Z X ( Z ) = Z X ^ ( Z ) X ( Z ) {\displaystyle Z{X}'\left(Z\right)=Z{\widehat {X}}'\left(Z\right)\cdot {X}\left(Z\right)}
对其做Z的反变换
n x = k = k x ^ x {\displaystyle nx=\sum _{k=-\infty }^{\infty }k{\widehat {x}}\leftx}

x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}

分别对于x的四种不同的状况做延伸
1.对于x是因果(causal)和最小相位(minimum phase) i.e. x = x ^ = 0 , n < 0 {\displaystyle x={\widehat {x}}\left=0,n<0}
对于 x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}
可得出
x = k = 0 k n x ^ x f o r   n > 0 {\displaystyle x=\sum _{k=0}^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n>0}

x = x ^ x + k = 0 n 1 k n x ^ x {\displaystyle x={\widehat {x}}\leftx+\sum _{k=0}^{n-1}{\frac {k}{n}}{\widehat {x}}\leftx}
2.对于x是最小相位(minimum phase)
x ^ = { 0 if  n < 0 x x k = 0 n 1 k n x ^ x x

相关

  • 格奥尔格·欧姆格奥尔格·西蒙·欧姆(德语:Georg Simon Ohm,1789年3月16日-1854年7月6日),德国物理学家。欧姆发现了电阻中电流与电压的正比关系,即著名的欧姆定律;他还证明了导体的电阻与其长度成
  • 洛厄尔市洛厄尔(英语:Lowell)位于美国马萨诸塞州东北部,面积37.7平方公里。根据美国2010年人口普查,共有106,519人,是马萨诸塞州第四大城市。洛厄尔和剑桥是米德尔塞克斯县的县厅所在地。
  • 众议员下议院或众议院,是两院制国家或自治地区议会的议院之一。在民主国家,众议院的议员人数大多按各地人口比例的多少来分配的。众议院在各国称谓各有不同:例如英国、加拿大所称“平
  • 英国财政部女王陛下财政部(Her Majesty's Treasury),简称英国财政部(HM Treasury),通称财政部(The Treasury),是负责开展和执行英国政府的公共财政政策和经济政策的英国政府部门。英格兰财政部
  • 开城特别市开城特别市(朝鲜语:개성특별시/開城特別市 Kaesŏng T'ŭkpyŏlsi */?),又名松都(송도)、松岳(송악)、开京(개경)、松京(송경),是朝鲜民主主义人民共和国的城市,近郊所产的高丽人参驰名国
  • 蠕形螨属见内文蠕形螨属(学名:),又称毛囊螨或毛囊虫,亦即俗称的“螨虫”的一部分,是小型寄生螨类的一个属。常寄生于哺乳动物的毛囊内。目前已知蠕形螨有约65个种,140多个亚种;它们都是最小
  • 大众剧场 (维也纳)大众剧场(德语:Volkstheater)是位于奥地利维也纳的一个剧场,成立于1889年。大众剧场是维也纳最著名的剧院之一,可通过地铁U2线和U3线到达。坐标:48°12′19″N 16°21′24″E / 48
  • 阿兰娜·比尔德阿兰娜·莫妮克·比尔德(英语:Alana Monique Beard,1982年5月14日-),美国职业篮球运动员,现效力于WNBA的洛杉矶火花队。她是2017年和2018年WNBA年度最佳防守球员。
  • 梨本威温梨本威温(日语:梨本 威温/なしもと たけあつ ,1982年9月9日-)是日本一名自由编舞。他出身于埼玉县,曾经是小杰尼斯成员,后又曾是编舞师组合Hidali(日语:Hidali)成员。
  • 坤坤坤坤可以指以下人物: