✍ dations ◷ 2025-10-06 18:58:58 #边
在几何学中,边或棱是指几何形状中连接顶点的几何结构。在一般常见的几何图形如多边形、多面体和多胞体中,边是连接两个顶点的线段,而边长指这线段的长度。而在一些较复杂的空间中的几何结构中,边有可能连接2个以上的顶点,例如复数空间中的复多胞形。在多边形中,边是位于多边形边界上的线段,又可以称为边缘。而在多面体或更高维度的多胞形中,边是面相交的线段。而穿过几何结构内部的线段不能称为边,其称为对角线。边依照所属的几何结构会有不同的特性。角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边。在有向角中,角的两条边皆有不同的称呼。通常称有向角起始的边为始边、另一条边则称为终边,而始边与终边相同的角称为同界角。在多边形中,边是位于多边形边界上的线段,又可以称为边缘。一般情况下,多边形的边数会与顶点数相等。在一些特殊的多边形中,特定的编会被依照其特性命名,例如在梯形中,一组平形的边通常称为底边,求面积时三角形的与高垂直的边也称为底边,其余两边则称侧边。在多面体中,边是多面体中两个面互相相交的线段,通常称为棱,表示物体两面相接的部分。而其所对应的二面角,即物体边缘的接角又称为棱角或棱子。边通常不包括其角本身,而棱则会包括其接角,然而这些词汇在英语中皆称为Edge,而棱图(Edge figure)探讨的则为棱角的特性,而非只探讨边本身。。一般情况下,多面体的边数可透过欧拉特征数计算得出。任何凸多面体表面的欧拉特征皆符合下列等式:其中V是顶点数、E是边数、F是面数。这个等式称为欧拉恒等式,由此可知,边的数量恒比顶点和面的数量的总和小2。例如,立方体有8个顶点和6个面,因此根据欧拉恒等式可以得到有立方体有12条边。多胞形是指多边形、多面体、多胞体等几何结构再任意维度的类比,因此多边形也是一种多胞形。在多边形中,两条边会交会在一个点上,更精确地说在维度为d维的d维凸多胞形中,会有至少d条边交会在1个顶点上,例如前述的多边形是一种二维多胞形,因此每个顶点至少都是2条边的交会点,这个现象称为巴林斯基定理(英语:Balinski's theorem),类似地,在多面体中,每条边都至少是2个二维面的交线,而在四维或更高维多胞体中会有三个或更多个二维面在每个边上相交。在实数空间中,边可以视为一种在实数线 R 1 {displaystyle mathbb {R} ^{1}} 上的封闭图形,其可以由两个端点来定义。类似地,复空间的边可以也可以视为在以 C 1 {displaystyle mathbb {C} ^{1}} 构成的“线”中的点集,其可以视为位于阿干特图(英语:Argand diagram)(x,y)=x+iy中的点集。而复空间的边可以视为连接位于同一个阿干特平面上多个顶点的多边形,这个多边形其不存在边,而是这个边连结了这些顶点。这种结构称为复空间线段。与实空间线段不同,由于复数不存在自然序,因此不能定义内部,和句话说无法定义复空间的边上的点。这种由3个或三个以上的顶点组成,且并未定义哪几个顶点要两两相连,只定义了一个表示需要相连之顶点的集合所组成的边,在图论中有对应的概念,为超边。由n个顶点组成的边称为n元边或n元棱。三元边又称三元棱是一种是一种位于实数空间中边,其可以视为实数空间中的线段在复数空间的类比。这种结构无法存于实空间,在实空间中,三元棱对应的几何结构为三角形。这种几何结构在施莱夫利符号中可以用3{}来表示。这种特殊的边出现于莫比乌斯-坎特八边形中。在图论中,边是连接两个图节点的抽象数学物件,而非如同多边形一般拥有具体的线段也不存在边长。然而,任何多面体都可以透过其骨架或边的骨架找到一个对应的边与顶点的图(英语:n-skeleton),在该图中的顶点可以对应到多面体的几何顶点,该图中的边也可以对应到多面体的几何边。反过来说,三维多面体的骨架图可以透过斯坦尼茨定理(英语:Steinitz's theorem)表达成3顶点连通的平面图。在高维凸多胞形理论中,维度为d的d维凸多胞形中,其(d-1)维的元素称为维面、(d-2)维的元素称为维脊或维边或维棱、(d-3)维的元素称为维峰。 因此,多边形的边同时也是其维面、三维凸多面体的边同时也是其维脊、四维凸多胞体的边同时也是其维峰。

相关

  • 内分泌疾病内分泌疾病是内分泌系统的疾病。与内分泌失调相关的医学分支称为内分泌学。从广义上讲,内分泌失调可分为三类:内分泌失调通常非常复杂,由于内分泌系统中涉及的反馈机制,可能有的
  • 过敏及免疫学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学免疫学(英语:Immunology)是生物医学的一
  • 小病疾病是生物在一定原因的损害性作用下,因自稳调节紊乱而发生的异常生命活动过程,是特定的异常病理情形,而且会影响生物体的部分或是所有器官。一般会解释为“身体病况”(medical
  • 华氏温标是一种温标,符号为℉。华氏温标的定义是:在标准大气压下,冰的熔点为32℉,水的沸点为212℉,中间有180等分,每等分为华氏1度。根据德国科学家华伦海特于1724年所写的一篇期
  • 肾上腺哺乳类动物中,肾上腺是呈三角形的内分泌腺体,位于肾脏上方,因而得名。其主要功能为通过合成皮质类甾醇和邻苯二酚胺(例如皮质醇和肾上腺素)来调控身体对压力产生的反应。人体中,肾
  • 埃伦伯格克里斯汀·戈特弗里德·埃伦伯格(德语:Christian Gottfried Ehrenberg,1795年4月19日-1876年6月27日),生于德国德利慈(Delitzsch),著名博物学家、动物学家、比较解剖学家、地理学家、
  • 在生物分类学中,域(英语:domain、superkingdom、empire、拉丁语:regio)是美国生物学家卡尔·沃斯1990年设计的三域系统中最高的分类单元,该系统中,生命之树(英语:Tree of life (biolo
  • ε-变形菌纲详见细菌分类表ε-变形菌要么厄氏杆菌是变形菌中的一类,与δ-变形菌关系最近。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
  • 兼性厌氧兼性厌氧菌是一类既可以进行有氧呼吸,也能够进行无氧呼吸或发酵的微生物。在氧气充足时,它们会通过有氧呼吸来产生ATP(三磷酸腺苷),但当氧气缺乏时,它们的呼吸方式就会变为无氧呼
  • 脂肪脂肪是室温下呈固态的油脂(室温下呈液态的油脂称作油),多来源于人和动物体内的脂肪组织,是一种羧酸酯,由碳、氢、氧三种元素组成。与糖类不同,脂肪所含的碳、氢的比例较高,而氧的比