守恒量

✍ dations ◷ 2025-10-08 12:29:33 #守恒量
在经典力学里,对于一个动力系统,随着时间的演进,所有保持不变的物理量都称为守恒量(conserved quantity),又称为运动常数。由于很多物理定律会表达某种守恒行为,对应的守恒量时常会出现于真实系统。例如,假设在某系统内涉及的作用力是保守力,则此系统的能量是守恒量。假设涉及的作用力是有心力,则此系统的角动量是守恒量。根据动量守恒定律,假若一个粒子所感受到的外力,其总矢量和为零,则这粒子的动量保持不变,是一个守恒量。在这状况下,粒子会呈匀速运动或著静止不变。以方程表达,假设粒子感受到的合外力为零:根据牛顿第二定律,合外力与动量 p {displaystyle mathbf {p} } 的关系式为所以,动量是一个常数,是一个守恒量。根据角动量守恒定律,假若一个粒子所感受到的外力矩,其其总矢量和为零,则这粒子的角动量保持不变,是一个守恒量。在这状况下,粒子会呈匀角运动或直线运动。以方程表达,假设粒子感受到的合外力矩 τ {displaystyle {boldsymbol {tau }}} 为零:合外力矩与角动量 ℓ {displaystyle {boldsymbol {ell }}} 的关系式为所以,角动量是一个常数,是一个守恒量。在经典力学里,粒子的能量定义为动能与势能的代数和。根据能量守恒定律,假若一个粒子所感受到的外力都是保守力,则这粒子的能量保持不变,是一个守恒量。以方程表达,能量 E {displaystyle E} 为动能 T {displaystyle T} 与势能 V {displaystyle V} 的代数和粒子的动能与运动速度 v {displaystyle mathbf {v} } 的关系为其中, m {displaystyle m} 是粒子的质量。而对于保守系统,势能与净保守力 F {displaystyle mathbf {F} } 的关系为能量对于时间的导数为所以,能量是一个常数,是一个守恒量。思考一个物理系统,其拉格朗日量是动能 T {displaystyle T} 与势能 V {displaystyle V} 的差值:通常,动能的参数为广义速度 q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N {displaystyle {dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N}} (符号上方的点号表示对于时间 t {displaystyle t} 的全导数),而势能的参数为广义坐标 q 1 , q 2 , q 3 , … , q N ; t {displaystyle q_{1},q_{2},q_{3},dots ,q_{N};t} ,所以,拉格朗日量的参数为 q 1 , q 2 , q 3 , … , q N ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N ; t {displaystyle q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N};t} 。这物理系统的运动轨道,以拉格朗日方程表示为其中, t {displaystyle t} 是时间。拉格朗日量对于时间的全导数为将拉格朗日方程代入,可以得到定义“能量函数” h ( q 1 , q 2 , q 3 , … ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … ; t ) {displaystyle {mathit {h}}(q_{1},q_{2},q_{3},dots ;{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ;t)} 为则能量函数与拉格朗日量的关系为假若拉格朗日量显性地与时间无关, ∂ L ∂ t = 0 {displaystyle {frac {partial {mathcal {L}}}{partial t}}=0} , L = L ( q 1 , q 2 , q 3 , … , q N ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N ) {displaystyle {mathcal {L}}={mathcal {L}}(q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N})} ,则能量函数是一个常数,是一个守恒量。设定 h = E {displaystyle {mathit {h}}=E} ,这常数 E {displaystyle E} 可以称为这物理系统的能量。因此,这物理系统的能量守恒。

相关

  • 上南方上南方(Upper South或Upland South)指的是美国南部偏北的地区,与其相对的是深南部(Lower South或Deep South)。在英语中"Upland South"和"Upper South"有些微分别。前者通常以地
  • As3d104s24p32, 8, 18, 5蒸气压第一:947.0 kJ·mol−1 第二:1798 kJ·mol−1 第三:2735 kJ·mol−1 (主条目:砷的同位素砷(Arsenic),化学元素符号为As,原子序数为33。砷分布在多种
  • 自然演绎在数理逻辑中,自然演绎是证明论中尝试提供象“自然”发生一样的逻辑推理形式模型的一种方式。这种方式对比于使用公理的公理系统。自然演绎来源自对共通于弗雷格、罗素和希尔
  • 交换配偶交换配偶,简称换偶,是指两对以上的伴侣(婚姻关系或民事结合或同居关系)互相交换配偶进行性交,古称易内、通室。《左传·襄公二十八年》记载庆封与卢蒲嫳易内之事,清朝杜乡渔隐《野
  • 音高音高(英语:pitch)在音乐领域里指的是人类心理对音符基频之感受。虽然不同乐器的频谱不同,但任何乐器演奏中央区的A音符基频皆为440Hz,因此所感受之音高皆同。此外,即使频率有些许
  • 赫尔伯特·傅利曼赫伯特·弗里德曼(英语:Herbert Friedman,1916年6月21日-2000年9月9日),美国天文学家,太阳物理学、探空火箭、高层大气物理学和天文学应用的先驱,他也是一位政治家和大众科学传播者
  • 国歌《自由颂》(希腊语:Ύμνος εις την Ελευθερίαν,拉丁字母转写:Ímnos is tin Eleftherían)本来是一首有158节的诗,迪奥尼西欧斯·所洛莫斯在1823年著成,尼古劳
  • 机械化农业机械化是指运用先进适用的农业机械装备农业,改善农业生产经营条件,不断提高农业的生产技术水准和经济效益、生态效益的过程。指在农业中能模仿人的某种活动,具备特定生产技
  • 准正准正系指非婚生子女之生父母结婚,法律上将非婚生子女视为婚生子女者,也就是若子女出生时,母亲并未与生父缔结婚姻关系,但嗣后生母与生父结婚,则子女在法律上即视为生父之婚生子女
  • 薛西斯一世薛西斯一世(古波斯语: