传递闭包

✍ dations ◷ 2025-04-26 17:15:50 #数学关系,闭包算子,图算法


传递闭包、即在数学中,在集合 上的二元关系 的传递闭包是包含 的 上的最小的传递关系。

例如,如果 是(生或死)人的集合而 是关系“为父子”,则 的传递闭包是关系“ 是 的祖先”。再比如,如果 是空港的集合而关系 为“从空港 到空港 有直航”,则 的传递闭包是“可能经一次或多次航行从 飞到 ”。

对于任何关系 , 的传递闭包总是存在的。传递关系的任何家族的交集也是传递的。进一步的,至少存在一个包含 的传递关系,也就是平凡的: × 。 传递闭包给出自包含 的所有传递关系的交集。

我们可以用更具体术语来描述 的传递闭包如下。定义在 上的一个关系 ,称 当且仅当存在有限的元素()序列,使得 = 0 并且

形式上写为

容易检查出关系 是传递的并且包含 。进一步地,任何包含 的传递关系也包含 ,所以 是 的传递闭包。

设 是任何元素的集合。

假定: {\displaystyle \exists } 传递关系 {\displaystyle \subseteq } {\displaystyle \wedge } {\displaystyle \not \subseteq } 。所以 {\displaystyle \exists } {\displaystyle \not \in } {\displaystyle \wedge } {\displaystyle \in } . 所以,特定的 {\displaystyle \not \in }

现在通过 的定义,我们知道了 {\displaystyle \exists } N {\displaystyle \in \mathbb {N} } {\displaystyle \in } 。接着, {\displaystyle \forall } N {\displaystyle \in \mathbb {N} } < {\displaystyle <} {\displaystyle \Rightarrow } {\displaystyle \in } 。所以,有从 到 路径如下: 。

但是,通过 在 上的传递性, {\displaystyle \forall } N {\displaystyle \in \mathbb {N} } < {\displaystyle <} {\displaystyle \Rightarrow } {\displaystyle \in } ,所以, {\displaystyle \in } {\displaystyle \wedge } {\displaystyle \in } ,所以通过 的传递性,我们得到了 {\displaystyle \in } 。矛盾于 {\displaystyle \not \in }

因此, {\displaystyle \forall } {\displaystyle \in } × {\displaystyle \times } , {\displaystyle \in } {\displaystyle \Rightarrow } {\displaystyle \in } 。这意味着 {\displaystyle \subseteq } ,对于任何包含 的传递的 。所以, 是包含 的最小传递闭包。

如果 是传递的,则 = 。

注意两个传递关系的并集不必须是传递的。为了保持传递性,必须采用传递闭包。例如,这出现在取两个等价关系或预序的并的时候。为了获得新的等价关系或预序,必须选用传递闭包(自反性和对称性 — 在等价关系的情况下 — 是自动的)。

有向无环图(DAG)的传递闭包是 DAG 的可到达性关系和一个严格偏序。

在计算复杂性理论中,复杂度类 NL 严格对应于可使用一阶逻辑和传递闭包表达的逻辑句子的集合。这是因为传递闭包性质有密切关系于 NL-完全问题 STCON,找到在一个图中的有向路径。类似的,类 L 是一阶逻辑带有交换传递闭包。在向二阶逻辑增加了传递闭包的时候,我们得到 PSPACE。

计算图的传递闭包的有效算法可见于 here。最简单的技术是Floyd-Warshall算法。

相关

  • 隐孢子虫隐胞子虫病(Cryptosporidiosis)是由单细胞寄生虫隐胞子虫(Cryptosporidium )造成的脊椎动物肠道疾病,是导致人腹泻的主要原因之一。这是一类通过粪口途径传播的疾病,主要发生在
  • B细胞慢性淋巴性白血病慢性淋巴细胞性白血病,Chronic lymphocytic leukemia,简称CLL ,这是一种最常见的白血病 主要影响B细胞。B细胞来自于骨髓,在淋巴结中发育,它主要的功能是产生抗体。在CLL中,B细胞
  • 厌氧呼吸呼吸作用,又称为细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解并转化能量的化学过程,也称为释放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作
  • 弹射弹射椅(Ejection seat),或称弹射座椅,是军用飞机及载人太空船飞行员用的座椅,可在紧急情况下将飞行员弹离飞行器并使其安全着陆的航空救生设备,太空船通常是配备逃逸塔,直接将乘员
  • 马德林港马德林港是阿根廷的城市,位于该国东部,由丘布特省负责管辖,始建于1865年7月28日,海拔高度17米,受半干旱气候影响,每年平均降雨量150至200毫米,2012年人口106,566。
  • 东田纳西东田纳西是美国田纳西州的东部大约三分之一的地区,是田纳西州法律规定的三大分部之一。东田纳西州有33个县,其中30个位于北美东部时区,另有3个县位于北美中部时区,分别是布莱德
  • 韩桑林韩桑林(高棉语:ហេង​ ​សំ​រិ​ន,罗马化:Heng Samrin;1934年5月25日-),也译作横山林,柬埔寨政治人物,现任柬埔寨国民议会主席、柬埔寨人民党名誉主席、国会议员。1979年至199
  • 阜新阜新可以指:
  • 海鲜煎饼朝鲜葱饼(韩语:파전)是一种朝鲜饼食,主要材料有面粉 (밀가루)(庆尚道是朝鲜的小麦主产地)、鸡蛋 (계란) 和葱 (파) ,常加入海产(해물),成为有名的海鲜葱饼(韩语:해물파전、又称为海鲜
  • 赞比亚华人赞比亚华人在最近10年增长迅速,根据民政事务部在议会提出提供应对问题的数据时指在2014年9月有19845位华人生活在赞比亚。在1970至1975年中国打造坦赞铁路时有成千上万的中国