塞迈雷迪定理

✍ dations ◷ 2025-09-10 12:10:33 #自2019年6月需要数学专家关注的页面,离散数学,组合数学,加性数论,数学定理

在算术组合学(英语:arithmetic combinatorics)中,塞迈雷迪定理是个关于自然数集子集中的等差数列的结论。1936年,艾狄胥和图兰·帕尔(英语:Pál Turán)猜想:若整数集 具有正的自然密度,则对任意的正整数 都可以在 中找出一个 项的等差数列。塞迈雷迪·安德烈于 1975 年证明了此结论。

若自然数集的子集 满足

则称 具有正的。塞迈雷迪定理断言,若自然数集的一个子集具有正的上密度,则对任意的正整数 , 该子集都包含无穷多个长为 的(公差不为 0) 的等差数列。

定理另有一个等价的有限性叙述(即不牵涉“无穷”的):对任意的正整数 和实数 δ ( 0 , 1 ] , {\displaystyle \delta \in (0,1],} } 的每个至少 元的子集,都包含长为 的等差数列。

定义 () 为 {1, 2, ..., } 的子集当中,不包含长为 的等差数列的最大子集的大小。塞迈雷迪定理给出渐近上界

换言之,() 随 的增长慢于线性。

范德瓦尔登定理是塞迈雷迪定理的先驱,其于 1927 年获证。

塞迈雷迪定理中,  = 1 和  = 2 的情况显然成立。 = 3 的结论关乎萨莱姆-斯宾塞集(英语:Salem-Spencer set)(不包含 3 项等差数列的整数子集)的大小。1953 年,克劳斯·罗特 利用类似哈代-李特尔伍德圆法的方法,证明了 = 3 的结论。1969 年,塞迈雷迪·安德烈利用组合学方法证明了 = 4 的情况。在 1972 年,罗特利用类似自己证明 = 3 的情况的方法,给出了 = 4 的情况的另证。

塞迈雷迪于 1975 年给出了适用于所有 的证明。 他巧妙地扩展了自己先前对 = 4 的情况的组合论证,艾狄胥称该证明为“组合学推理的杰作”("a masterpiece of combinatorial reasoning"). 定理亦有若干其他证明,较重要的有:1977 年希勒尔·菲尔斯滕贝格利用遍历理论给出的证明,以及 2001 年高尔斯结合傅里叶分析和组合数学给出的证明。陶哲轩称塞迈雷迪定理的众多证明为“罗塞塔石碑”,因为它们连结了几个乍看之下迥异的数学分支。

() 的确切增长速度仍然未知。目前所知的上下界为

其中 n = log k . {\displaystyle n=\lceil \log k\rceil .} 可以找到比起一般情况更紧的上下界。当 = 3 时,布尔甘、希思-布朗 (Roger Heath-Brown)、塞迈雷迪,以及汤·桑德斯(英语:Tom Sanders (mathematician))依次给出了愈来愈好的下界。目前所知的上下界为

两边的界限分别由欧布莱恩 和布鲁姆(Thomas Bloom) 给出。

当 = 4 时,本·格林(英语:Ben Green (mathematician))和陶哲轩 证明了存在 > 0 使得

希勒尔·菲尔斯滕贝格和伊扎克·卡茨内勒松(英语:Yitzhak Katznelson)利用遍历理论整明了塞迈雷迪定理的高维推广。 高尔斯、沃伊杰赫·勒德尔(英语:Vojtěch Rödl)和约泽夫·斯科肯 (Jozef Skokan) ,以及布兰登·纳格 (Brendan Nagle)、 勒德尔和马蒂亚斯·沙赫特(英语:Mathias Schacht) ,和陶哲轩给出了各自的组合学证明。

亚历山大·莱布门 (Alexander Leibman) 和维塔利·别尔格尔松(英语:Vitaly Bergelson) 给出定理对多项式列的推广:若 A N {\displaystyle A\subset \mathbb {N} } 的上密度为正,且 p 1 ( n ) , p 2 ( n ) , , p k ( n ) {\displaystyle p_{1}(n),p_{2}(n),\dotsc ,p_{k}(n)} 为满足 p i ( 0 ) = 0 {\displaystyle p_{i}(0)=0} 的整值多项式(英语:Integer-valued polynomial),则存在无穷多组 u , n Z {\displaystyle u,n\in \mathbb {Z} } 使得对 1 i k {\displaystyle 1\leq i\leq k} 都有 u + p i ( n ) A . {\displaystyle u+p_{i}(n)\in A.} 莱布门和别尔格尔松的结果同样适用于高维的情况。

塞迈雷迪定理的有限性版本可推广至有限的加法群上,例如有限域上的向量空间。 定理在有限域上的类比,是有助理解原定理(在正整数集上)的模型。 所谓封顶集(英语:Cap set)问题,就是要找出向量空间 F 3 n {\displaystyle \mathbb {F} _{3}^{n}} 所包含的无 3 项等差数列的最大子集的大小,即塞迈雷迪定理当 k = 3 时的界限。

格林-陶定理断言,存在任意长的质数等差数列。此结论不能由塞迈雷迪定理推出,因为质数集的密度为 0. 本·格林(英语:Ben Green (mathematician))和陶哲轩在其证明中引入了“相对性”(英语:relative) 的塞迈雷迪定理,该定理适用于任意具特定伪随机性的整数子集(允许密度为 0)。大卫·康伦(英语:David Conlon),雅各布·福克斯(英语:Jacob Fox)和赵宇飞 (Yufei Zhao)其后亦给出了适用于更一般情况的相对性塞迈雷迪定理。

埃尔德什等差数列猜想可以推出塞迈雷迪定理和格林-陶定理。

相关

  • 呼吸系统疾病呼吸系统疾病 (Respiratory Diseases)。 是指局限于呼吸系统的疾病。从生理上分为两类:阻塞性肺病和限制性肺疾病。 从解剖学上可分为: 上呼吸道疾病,下呼吸道疾病,肺间质疾病和
  • 810110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 语言起源语言的起源是一个有高度争议性的话题,由于可得到的实证证据的欠缺,许多人认为严肃的学者不应涉足于此问题。1866年,巴黎语言学会(法语:Société de linguistique de Paris)甚至明
  • 珀耳修斯珀耳修斯(希腊语:Περσεύς;拉丁文:Perseus),是希腊神话中宙斯和达那厄的儿子。阿耳戈斯国王阿克里西俄斯(英语:Acrisius)请神喻,预言说他将死于他自己的女儿达那厄的儿子之手。
  • 光禄寺光禄寺是中国古代掌理膳食的官署。 光禄寺原称为光禄勋,由汉朝郎中令演变而来,统属宫廷宿卫及侍从等。至魏、晋仅存其名,北齐则易名为光禄寺,职责亦变为掌理皇室膳食。自此各代
  • 北方三岛北方三岛是台湾基隆北方海域3个离岛的合称,皆属基隆市中正区管辖:三座岛屿中,棉花屿与彭佳屿因面积较大,清代与日治时代曾有人定居,现今仅彭佳屿有海巡署部队驻扎。除去有主权争
  • 苏运莹苏运莹(1991年4月8日-),是一位生于海南三亚的创作歌手。2015年,苏运莹凭借原创歌曲〈野子〉获得广大知名度,并以第二季《中国好歌曲》全国总决赛亚军之姿出道;同年,〈野子〉获得“第
  • 砷的同位素砷(原子量:74.92160(2))共有43个同位素,其中有个1同位素是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
  • 格奥尔格 (萨克森国王)格奥尔格(Georg,1832年8月8日-1904年10月15日),全名弗里德里希·奥古斯特·格奥尔格·路德维希·威廉·马克西米连·卡尔·玛利亚·奈波穆克·巴普蒂斯特·克萨威尔·基里亚库斯
  • 自由北韩放送自由北韩放送(朝鲜语:자유북한방송/自由北韓放送,英语:Free North Korea Radio、Radio Free North Korea,略称:FNK)是一家由韩国民间团体所主办的对朝鲜广播电台,于2005年12月开始播