塞迈雷迪定理

✍ dations ◷ 2024-09-20 06:38:39 #自2019年6月需要数学专家关注的页面,离散数学,组合数学,加性数论,数学定理

在算术组合学(英语:arithmetic combinatorics)中,塞迈雷迪定理是个关于自然数集子集中的等差数列的结论。1936年,艾狄胥和图兰·帕尔(英语:Pál Turán)猜想:若整数集 具有正的自然密度,则对任意的正整数 都可以在 中找出一个 项的等差数列。塞迈雷迪·安德烈于 1975 年证明了此结论。

若自然数集的子集 满足

则称 具有正的。塞迈雷迪定理断言,若自然数集的一个子集具有正的上密度,则对任意的正整数 , 该子集都包含无穷多个长为 的(公差不为 0) 的等差数列。

定理另有一个等价的有限性叙述(即不牵涉“无穷”的):对任意的正整数 和实数 δ ( 0 , 1 ] , {\displaystyle \delta \in (0,1],} } 的每个至少 元的子集,都包含长为 的等差数列。

定义 () 为 {1, 2, ..., } 的子集当中,不包含长为 的等差数列的最大子集的大小。塞迈雷迪定理给出渐近上界

换言之,() 随 的增长慢于线性。

范德瓦尔登定理是塞迈雷迪定理的先驱,其于 1927 年获证。

塞迈雷迪定理中,  = 1 和  = 2 的情况显然成立。 = 3 的结论关乎萨莱姆-斯宾塞集(英语:Salem-Spencer set)(不包含 3 项等差数列的整数子集)的大小。1953 年,克劳斯·罗特 利用类似哈代-李特尔伍德圆法的方法,证明了 = 3 的结论。1969 年,塞迈雷迪·安德烈利用组合学方法证明了 = 4 的情况。在 1972 年,罗特利用类似自己证明 = 3 的情况的方法,给出了 = 4 的情况的另证。

塞迈雷迪于 1975 年给出了适用于所有 的证明。 他巧妙地扩展了自己先前对 = 4 的情况的组合论证,艾狄胥称该证明为“组合学推理的杰作”("a masterpiece of combinatorial reasoning"). 定理亦有若干其他证明,较重要的有:1977 年希勒尔·菲尔斯滕贝格利用遍历理论给出的证明,以及 2001 年高尔斯结合傅里叶分析和组合数学给出的证明。陶哲轩称塞迈雷迪定理的众多证明为“罗塞塔石碑”,因为它们连结了几个乍看之下迥异的数学分支。

() 的确切增长速度仍然未知。目前所知的上下界为

其中 n = log k . {\displaystyle n=\lceil \log k\rceil .} 可以找到比起一般情况更紧的上下界。当 = 3 时,布尔甘、希思-布朗 (Roger Heath-Brown)、塞迈雷迪,以及汤·桑德斯(英语:Tom Sanders (mathematician))依次给出了愈来愈好的下界。目前所知的上下界为

两边的界限分别由欧布莱恩 和布鲁姆(Thomas Bloom) 给出。

当 = 4 时,本·格林(英语:Ben Green (mathematician))和陶哲轩 证明了存在 > 0 使得

希勒尔·菲尔斯滕贝格和伊扎克·卡茨内勒松(英语:Yitzhak Katznelson)利用遍历理论整明了塞迈雷迪定理的高维推广。 高尔斯、沃伊杰赫·勒德尔(英语:Vojtěch Rödl)和约泽夫·斯科肯 (Jozef Skokan) ,以及布兰登·纳格 (Brendan Nagle)、 勒德尔和马蒂亚斯·沙赫特(英语:Mathias Schacht) ,和陶哲轩给出了各自的组合学证明。

亚历山大·莱布门 (Alexander Leibman) 和维塔利·别尔格尔松(英语:Vitaly Bergelson) 给出定理对多项式列的推广:若 A N {\displaystyle A\subset \mathbb {N} } 的上密度为正,且 p 1 ( n ) , p 2 ( n ) , , p k ( n ) {\displaystyle p_{1}(n),p_{2}(n),\dotsc ,p_{k}(n)} 为满足 p i ( 0 ) = 0 {\displaystyle p_{i}(0)=0} 的整值多项式(英语:Integer-valued polynomial),则存在无穷多组 u , n Z {\displaystyle u,n\in \mathbb {Z} } 使得对 1 i k {\displaystyle 1\leq i\leq k} 都有 u + p i ( n ) A . {\displaystyle u+p_{i}(n)\in A.} 莱布门和别尔格尔松的结果同样适用于高维的情况。

塞迈雷迪定理的有限性版本可推广至有限的加法群上,例如有限域上的向量空间。 定理在有限域上的类比,是有助理解原定理(在正整数集上)的模型。 所谓封顶集(英语:Cap set)问题,就是要找出向量空间 F 3 n {\displaystyle \mathbb {F} _{3}^{n}} 所包含的无 3 项等差数列的最大子集的大小,即塞迈雷迪定理当 k = 3 时的界限。

格林-陶定理断言,存在任意长的质数等差数列。此结论不能由塞迈雷迪定理推出,因为质数集的密度为 0. 本·格林(英语:Ben Green (mathematician))和陶哲轩在其证明中引入了“相对性”(英语:relative) 的塞迈雷迪定理,该定理适用于任意具特定伪随机性的整数子集(允许密度为 0)。大卫·康伦(英语:David Conlon),雅各布·福克斯(英语:Jacob Fox)和赵宇飞 (Yufei Zhao)其后亦给出了适用于更一般情况的相对性塞迈雷迪定理。

埃尔德什等差数列猜想可以推出塞迈雷迪定理和格林-陶定理。

相关

  • 脱臼脱臼是指骨头末端因跌倒或骨头受撞击等外力影响而脱离关节的位置,常发生在臀部、肩膀(肩脱臼)、肘部、指头和膝盖(膝关节脱位)。意外脱臼时须将患处以夹板或吊带等物固定,不可贸然
  • 元古宙元古宙(Proterozoic,符号PR),又称元古代、原生代,是地质时代中的一个时期,开始于同位素年龄2500Ma(百万年前),结束于542.0±1.0Ma。元古宙包括了古元古代、中元古代、新元古代。元古
  • 马塞尔·普鲁斯特马塞尔·普鲁斯特(Marcel Proust,1871年7月10日-1922年11月18日),法国意识流作家,全名为瓦伦坦·路易·乔治·欧仁·马塞尔·普鲁斯特(Valentin-Louis-Georges-Eugène-Marcel Prou
  • 卡迪西亚战役Rostam Farrokhzād †Bahman Jaduya †HormuzanJalinus †Shahrīyār bin Kanāra †50,000-100,000(modern estimates) 200,000卡迪西亚战役(阿拉伯语:معركة الق
  • 大激想《大激想》是华星唱片为华星三宝(梁汉文、杨千嬅及陈奕迅)推出的一张合辑,主打歌曲为同名主打《大激想》。
  • 萨德萨德可以指:
  • 奥古斯托·拉德马克奥古斯托·拉德马克(Augusto Hamann Rademaker Grünewald,1905年5月11日-1985年9月13日),曾任巴西海军上将。于1969年与奥雷利奥·德·里拉及马斯奥·美罗组成巴西军政府主席团,
  • 列齿亚纲列齿亚纲(学名:Taxodonta),旧作列齿目或多齿目:38,原是瓣鳃纲之下的一个分类元,现时已弃用。旧属本目/本亚纲的分类:
  • 格里弗斯将军格里弗斯将军(英语:General Grievous,又译葛里维斯将军、葛瑞菲斯将军)是电影《星球大战》前传三部曲中的虚构角色,亦在《星球大战:克隆人战争》中有许多戏份。为分离军的机器人统
  • 汉斯·朗斯多夫西班牙内战 第二次世界大战汉斯·威廉·朗斯多夫(德语:Hans Wilhelm Langsdorff,1894年3月20日-1939年12月20日),德意志帝国海军、威玛国家海军和纳粹德国海军军官。他最著名的经