在算术组合学(英语:arithmetic combinatorics)中,塞迈雷迪定理是个关于自然数集子集中的等差数列的结论。1936年,艾狄胥和图兰·帕尔(英语:Pál Turán)猜想:若整数集 具有正的自然密度,则对任意的正整数 都可以在 中找出一个 项的等差数列。塞迈雷迪·安德烈于 1975 年证明了此结论。
若自然数集的子集 满足
则称 具有正的。塞迈雷迪定理断言,若自然数集的一个子集具有正的上密度,则对任意的正整数 , 该子集都包含无穷多个长为 的(公差不为 0) 的等差数列。
定理另有一个等价的有限性叙述(即不牵涉“无穷”的):对任意的正整数 和实数 } 的每个至少 元的子集,都包含长为 的等差数列。
定义 () 为 {1, 2, ..., } 的子集当中,不包含长为 的等差数列的最大子集的大小。塞迈雷迪定理给出渐近上界
换言之,() 随 的增长慢于线性。
范德瓦尔登定理是塞迈雷迪定理的先驱,其于 1927 年获证。
塞迈雷迪定理中, = 1 和 = 2 的情况显然成立。 = 3 的结论关乎萨莱姆-斯宾塞集(英语:Salem-Spencer set)(不包含 3 项等差数列的整数子集)的大小。1953 年,克劳斯·罗特 利用类似哈代-李特尔伍德圆法的方法,证明了 = 3 的结论。1969 年,塞迈雷迪·安德烈利用组合学方法证明了 = 4 的情况。在 1972 年,罗特利用类似自己证明 = 3 的情况的方法,给出了 = 4 的情况的另证。
塞迈雷迪于 1975 年给出了适用于所有 的证明。 他巧妙地扩展了自己先前对 = 4 的情况的组合论证,艾狄胥称该证明为“组合学推理的杰作”("a masterpiece of combinatorial reasoning"). 定理亦有若干其他证明,较重要的有:1977 年希勒尔·菲尔斯滕贝格利用遍历理论给出的证明,以及 2001 年高尔斯结合傅里叶分析和组合数学给出的证明。陶哲轩称塞迈雷迪定理的众多证明为“罗塞塔石碑”,因为它们连结了几个乍看之下迥异的数学分支。
() 的确切增长速度仍然未知。目前所知的上下界为
其中 可以找到比起一般情况更紧的上下界。当 = 3 时,布尔甘、希思-布朗 (Roger Heath-Brown)、塞迈雷迪,以及汤·桑德斯(英语:Tom Sanders (mathematician))依次给出了愈来愈好的下界。目前所知的上下界为
两边的界限分别由欧布莱恩 和布鲁姆(Thomas Bloom) 给出。
当 = 4 时,本·格林(英语:Ben Green (mathematician))和陶哲轩 证明了存在 > 0 使得
希勒尔·菲尔斯滕贝格和伊扎克·卡茨内勒松(英语:Yitzhak Katznelson)利用遍历理论整明了塞迈雷迪定理的高维推广。 高尔斯、沃伊杰赫·勒德尔(英语:Vojtěch Rödl)和约泽夫·斯科肯 (Jozef Skokan) ,以及布兰登·纳格 (Brendan Nagle)、 勒德尔和马蒂亚斯·沙赫特(英语:Mathias Schacht) ,和陶哲轩给出了各自的组合学证明。
亚历山大·莱布门 (Alexander Leibman) 和维塔利·别尔格尔松(英语:Vitaly Bergelson) 给出定理对多项式列的推广:若 的上密度为正,且 为满足 的整值多项式(英语:Integer-valued polynomial),则存在无穷多组 使得对都有 莱布门和别尔格尔松的结果同样适用于高维的情况。
塞迈雷迪定理的有限性版本可推广至有限的加法群上,例如有限域上的向量空间。 定理在有限域上的类比,是有助理解原定理(在正整数集上)的模型。 所谓封顶集(英语:Cap set)问题,就是要找出向量空间 所包含的无 3 项等差数列的最大子集的大小,即塞迈雷迪定理当 k = 3 时的界限。
格林-陶定理断言,存在任意长的质数等差数列。此结论不能由塞迈雷迪定理推出,因为质数集的密度为 0. 本·格林(英语:Ben Green (mathematician))和陶哲轩在其证明中引入了“相对性”(英语:relative) 的塞迈雷迪定理,该定理适用于任意具特定伪随机性的整数子集(允许密度为 0)。大卫·康伦(英语:David Conlon),雅各布·福克斯(英语:Jacob Fox)和赵宇飞 (Yufei Zhao)其后亦给出了适用于更一般情况的相对性塞迈雷迪定理。
埃尔德什等差数列猜想可以推出塞迈雷迪定理和格林-陶定理。