西罗定理

✍ dations ◷ 2025-02-23 16:54:57 #有限群,代数定理

在数学里,尤其是在群论内,西罗(Sylow)定理(以彼得·卢德维格·梅德尔·西罗来命名,或称西洛定理)为一系列定理的总称。这些定理关于给定的有限群包含的固定阶子群的数目给出了详细的信息。这些定理在有限群论中起到了基础的作用,并且在有限单群分类中有重要应用。西罗定理假设了拉格朗日定理部分反面的情况。拉格朗日定理叙述了若是一个有限群的子群,则的阶会整除的阶。西洛定理则保证,对于之目的某些约数,会有对应此些约数的子群存在着,且会给出有关此类子群之数目的相关信息。

设是一个素数;则可定义的西罗-子群(或者称为-西罗子群),其为的-子群中最大的一个(即其为的p-群,且不为其他的-子群的真子群)。

西罗-子群所组成的集合记为Syl()。Syl()之中群的差异在群论的讨论中是可以忽略的。更明确地说,在Syl()内的每个群彼此间同构;这性质也同时回过头来决定了的其他性质。

以下定理由挪威数学家彼得·卢德维格·梅德尔·西罗首次于1872年提出并证明,刊载于《Mathematische Annalen》中。

给定一有限群,则可以将||可以写成 {\displaystyle \cdot } 的形式

其中||表示的阶,为正整数,且不为的素因数。

定理1:存在一個階為的子群H,使得為G的西羅-子群。

下面的推论比起定理1较为狭义

推論:對任意有限群,及任意||的質因數,則在之中,存在一個階為的元素。

上述推论又称作柯西定理,由柯西首次证明

定理2:若是的子群,為的p-西羅子群,其中||=, 為正整數,則存在一個中的元素使得H為的子群。

从这可以推论出,所有的西罗-子群彼此共轭(且因共轭可得到同构),即若、皆为的西罗-子群,则存在一个于内的元素,使得−1 = 。

定理3:設np為G的西羅p-子群的数量且有                              n                      p                                  1                (        m        o        d                p        )                        a        n        d                                  n                      p                                    |                s              {\displaystyle n_{p}\equiv 1\;(mod\;p)\;\;and\;\;n_{p}|s}  -子群都会有相同的目;相反地,若一个子群有目,则其为一个西罗-子群,且会同构于每个其他的西罗-子群。基于素数最大次方的条件,若为的任一个-子群,则会为一个有目之-子群的子群。

定理3的一个很重要结论为=1的条件会等价于描述此一的西罗-子群是一个正规子群。(存在没有正规西罗子群但有正规子群的群,如4。)

西罗定理有个对无限群的类比。可定义一个于无限群中的西罗-子群为一个在所有群内之-子群的内含关系内为极大的-子群。因佐恩引理,这种子群存在。

定理:若为一个的西罗-子群,且 = |Cl()|为有限的,则每一个西罗-子群都会共轭于,且 = 1 mod ,其中Cl()表示为的共轭类。

设为一个其目为15 = 3 · 5的群,则3必须整除5,且3=1 mod 3。其中唯一满足上述限制的值只有1;因此,只存在一个其目为3的子群,且其必须为正规子群(因为其没有其他的共轭)。相似地,5会整除3,且5=1 mod 5;因此亦只有一个其目为5的正规子群。当3和5为互素时,此两个子群的交集为平凡群{e},所以必须要是个循环群。因此,只存在一个其目为15的群(以同构来分),标记为Z/15Z。

举另一个更复杂的例子来说,可证明不存在一个其目为350的简单群。若|| = 350 = 2 · 52 · 7,则5必须整除14=2·7,且5 = 1 mod 5。因此,5=1(因为6和11都不会整除14),而因此必然会有一个其目为52的正规子群,故不可能为简单群。

西罗定理的证明利用了群作用的许多概念。群会以许多种方式作用在其自身或其-子群上,而此类的每个作用则可以被利用来证明西罗定理的其中一个定理。下列的证明是基于1959年H.Wielandt所发表之整合的论述。在下面的论述中,用|来表示“a会整除b”,而 {\displaystyle \nmid } 则用来表示“a不可整除b”。

定理1:一个其目||可以被一素数次方整除的有限群会有一个其目为的子群。

证明:设||=, {\displaystyle \mid } +1 {\displaystyle \nmid } 的元素个数为之子集所组成的集合,可知|Ω| = ( p k m p k ) {\displaystyle {p^{k}m \choose p^{k}}} +1 {\displaystyle \nmid } 的选定。令以左乘积作用于Ω上,则基于之选定,会存在一个于Ω内的,其具有一个会使+1 {\displaystyle \nmid } 。这里会有|θ| = || = 的关系,其中标示为集合的隐定子子群,因此 | ||,故 ≤ ||。注意在的作用下之于内的两个元素和可能为不同个的,所以|| ≥ ||。由上述 ≤ ||和|| ≥ ||两个结果,故知|| = 。然后,即为此一想要的群。

引论: 设为一个有限-群,将作用于一个有限集合Ω上,及令Ω0为在的作用下为固定之Ω内的点所组成之集合。然后可知|Ω| ≡ |Ω0| mod 。

证明:将Ω写成在下之轨道此种不相交集合的并集。每一个在Ω内的元素若在的作用下不固定的话,其将会在其目为||/||之轨道上(其中为隐定子),此目依题目的假设会是的倍数(不可能为1,因为其目为1的轨道即为在的作用下固定的点)。因此结论立即就出来了。

定理2:若是的子群且||=,以及为的p-西罗子群,则存在一个在内的元素会使得H为的子群。特别地是,所有的西罗-子群都会共轭(且因此同构)于另一个,即若和为的西罗-子群,则存在一个内的元素会使得−1 = 。

证明:设Ω为内的左陪集所组成的集合,及以左乘积作用在Ω上。应用于Ω上的引理,可知|Ω0| ≡ |Ω| = mod 。由定义可知 {\displaystyle \nmid }  : ],所以 {\displaystyle \nmid } ∈ Ω0。因此对每个于内的元素, = ,故−1 = 且−1 ∈ ,且因此 ∈ −1,故会包含于某些内元素之−1内。若为一个西罗-子群,则|| = || = |−1|,因此对某些在内的, = −1。

定理3:设为一有限群的任一西罗-子群的目,则 | ||/且 ≡ 1 mod 。

证明:依定理2, = ,其中为任一个子群且()为于内的正规化子,可知此数为||/的约数。令Ω为所有的西罗-子群所组成的集合,且以共轭作用于Ω上。设 ∈ Ω0并可知对所有 ∈ , = −1,因此 ⊆ ()。依定理2,和会于()内共轭,尤其是会在()为正规,故可知 = 。由上可知Ω0 = {},因此由引理可知|Ω| ≡ |Ω0| = 1 mod 。

由一个给定的群中得出一个西罗子群是计算群论中一个很重要的问题。在置换群里,已由William Kantor证明出一个西罗-子群可以在输入数量的多项式时间内被找到。

相关

  • 戴元本戴元本(1928年7月31日-),生于江苏南京,籍贯湖南常德,中国理论物理和粒子物理学家。1947年考入中央大学理学院物理系,1952年毕业于南京大学后在南京工学院任教。1958年进入中国科学
  • B型流感嗜血菌流感嗜血杆菌(学名:Haemophilus influenzae),简称嗜血杆菌,前称费佛氏杆菌(或译拜菲尔氏菌)或流感杆菌,是一种没有运动力的革兰氏阴性杆菌。它是于1892年由费佛(英语:Richard Friedric
  • 旗山国小高雄市旗山区旗山国民小学,位于台湾高雄市旗山区,其历史可追溯至于1898年设置的“蕃薯藔公学校”。该校建于日治时期的校舍与大礼堂于2000年5月31日公告为古迹。蕃薯藔公学校
  • 沃州体育馆沃州体育馆(法语:Vaudoise aréna,德语:Waadtländer Arena),临时名称为马莱空间(Espace Malley),是一座位于瑞士洛桑普里伊的综合性体育馆。体育馆于2019年9月24日启用,体育馆兴建于
  • 李福星李福星(1845年-1919年)字庆堂,云南巧家人。清末民初军事将领。李福星出生前,其父的两个儿子相继病故。李福星出生后,成为家中独子。后来,其父早逝,其母因伤心而双目失明。李福星被两
  • 阿马托阿马托是由TNT和硝酸铵合成的高爆炸性物质。英国原名Amatol是由铵(Ammonium)和甲苯(Toluene)合成的。在第一次世界大战和第二次世界大战中,阿马托作为作为空投炸弹、弹药、深水炸
  • 刘靖夫刘靖夫(1886年-1944年),山东章丘人,金陵大学附属中学首任华人校长。曾毕业于汇文书院成美馆,1906年毕业于汇文书院。毕业后帮其父主持南徐中学事务,1910年迁至金陵,于金陵大学先后任
  • 夢咲寧寧夢咲ねね(7月4日),爱称NENE(ねね),是前宝冢歌剧团星组主演娘役。生于富山县富山市,富山第一高等学校出身。公称身高164公分。宝冢音乐学校入学前曾用本名当过杂志的读者模特儿。
  • 北海道财务局北海道财务局(日语:北海道財務局/ほっかいどうざいむきょく)是北海道札幌市北区的财务省的地方支分部局。由北海道政府管辖。
  • 葛桷葛桷(?-?),字安甫,浙江绍兴府上虞县人,民籍,明朝政治人物。浙江乡试第六十九名。嘉靖二十三年(1544年),登甲辰科进士。历官直隶常熟县知县。曾祖葛文玉,赠通议大夫大理寺卿;祖父葛用成;父葛