射流

✍ dations ◷ 2025-04-04 06:28:22 #微分几何,光滑函数

数学上,射流(jet)是一个操作,它取一个可微函数并在其定义域的每一点产生一个多项式,也就是的截尾泰勒多项式。虽然这是一个射流的定义,射流理论将这些多项式作为抽象多项式而不是多项式函数。

在给出一个射流的严格定义之前,有必要查看一些特殊情况。

f : R R {\displaystyle f:{\mathbb {R} }\rightarrow {\mathbb {R} }} 有至少阶导数。那么根据泰勒定理,

其中

那么在点 x 0 {\displaystyle x_{0}} -射流定义为多项式

射流通常视为变量的抽象多项式,而不是一个该变量实际的多项式函数。换言之,是一个不定变量,这使得我们可以在射流上施行各种代数操作。实际上,射流是从基点 x 0 {\displaystyle x_{0}} 次多项式。这标志着射流和截尾泰勒级数的概念上的区别:通常泰勒级数被视为函数式地依赖于它的变量,而非其基点。另一方面,射流将泰勒级数的代数属性和它们的函数属性分离开来。我们将在本条目后面讨论该区别的原因和应用。

假设 f : R n R m {\displaystyle f:{\mathbb {R} }^{n}\rightarrow {\mathbb {R} }^{m}} 阶导数。本例中,推广的泰勒定理断言

这个情况下,的-射流定义为多项式

射流可以加上两种基本的代数结构。第一个是乘积结构,虽然这最后是最不重要的。第二个是射流的复合结构。

f , g : R n R {\displaystyle f,g:{\mathbb {R} }^{n}\rightarrow {\mathbb {R} }} ,因为可以将射流理解为形式化多项式。这个乘积就是上的普通多项式的乘积,以 z k + 1 {\displaystyle z^{k+1}} (0)=0和(0)=0,则 f g : R n R {\displaystyle f\circ g:{\mathbb {R} }^{n}\rightarrow {\mathbb {R} }^{\ell }} 定义为 J 0 k f J 0 k g = J 0 k ( f g ) . {\displaystyle J_{0}^{k}f\circ J_{0}^{k}g=J_{0}^{k}(f\circ g).} -射流的复合不过就是多项式的复合,以次数 > k {\displaystyle >k}

本节集中描述在一点的一个函数的射流的两种不同的严格定义,之后讨论泰勒定理。这些定义在给出在两个流形之间的射流的内蕴定义中是很有用的。

如下的定义采用了数学分析中定义射流和射流空间的思想。它可以推广到巴拿赫空间之间的光滑函数、实或复域之间的解析函数、p进分析、或是其它的分析领域。

C ( R n , R m ) {\displaystyle C^{\infty }({\mathbb {R} }^{n},{\mathbb {R} }^{m})} 为非负整数,并令为 R n {\displaystyle {\mathbb {R} }^{n}} 和等价如果和在有相同的值,并且所有它们的偏导数等价到阶,若和在数值相同,并且它们直到阶的偏导数全部相同。

阶射流空间 C ( R n , R m ) {\displaystyle C^{\infty }({\mathbb {R} }^{n},{\mathbb {R} }^{m})} 定义为 E p k {\displaystyle E_{p}^{k}} 阶射流定义为在 J p k ( R n , R m ) {\displaystyle J_{p}^{k}({\mathbb {R} }^{n},{\mathbb {R} }^{m})} 的芽的向量空间。令 m p {\displaystyle {\mathfrak {m}}_{p}} 为零的函数的理想。(这是局部环 C ( R p n , R m ) {\displaystyle C^{\infty }({\mathbb {R} }_{p}^{n},{\mathbb {R} }^{m})} 直到阶导数全部为零的函数的芽组成。现在我们可以定义点的射流空间为

f : R n R m {\displaystyle f:{\mathbb {R} }^{n}\rightarrow {\mathbb {R} }^{m}} 在的阶射流为 J p k ( R n , R m ) {\displaystyle J_{p}^{k}({\mathbb {R} }^{n},{\mathbb {R} }^{m})} ()=的函数的射流组成的子空间记为

若和是两个光滑流形,我们如何定义函数 f : M N {\displaystyle f:M\rightarrow N} 和上的局部坐标来定义。这个方法的缺点是流形不能在这种方式下以等变的形式来定义。射流不像张量那样变换。实际上,两个流形间的函数的射流属于一个射流丛。

本节先引入从实直线到流形的函数的射流的概念。然后,证明这样的射流构成一个纤维丛,和切丛类似,它也是一个射流丛的一个伴随丛。接下来,讨论定义两个光滑流形间的函数的射流的问题。在整节中,我们全部采用分析方法。虽然代数几何方法在很多应用中更合适,因其过于微妙不便于在此系统论述。细节请参看射流 (代数几何)。

假设为一个光滑流形,为其中一点。我们来定义穿过的曲线的射流,我们所指的曲线也即使得(0)=的光滑函数 f : R M {\displaystyle f:{\mathbb {R} }\rightarrow M} 和为一对穿过的曲线。我们称和在为阶等价,如果存在的某个邻域,使得对于每个光滑函数 φ : U R {\displaystyle \varphi :U\rightarrow {\mathbb {R} }} 的曲线的阶相切。

现在我们定义阶射流空间 J 0 k ( R , M ) p {\displaystyle J_{0}^{k}({\mathbb {R} },M)_{p}} 的曲线构成的等价类。曲线穿过的阶射流定义为所属的等价类,记为 J k f {\displaystyle J^{k}f} 在中变化, J 0 k ( R , M ) p {\displaystyle J_{0}^{k}({\mathbb {R} },M)_{p}} 上的一个纤维丛:阶切丛,经常记为 (虽然这个记号有时会导致混淆)。在=1时,一阶切丛就是通常的切丛:1=。

要证明实际上构成一个纤维丛,我们需要查看一下 J 0 k ( R , M ) p {\displaystyle J_{0}^{k}({\mathbb {R} },M)_{p}} )= (,...,)为在的邻域中的一个局部坐标系。稍微滥用记号一下,我们可以视()为一个局部微分同胚 ( x i ) : M R n {\displaystyle (x^{i}):M\rightarrow \mathbb {R} ^{n}} 穿过的两条曲线和以 E p k {\displaystyle E_{p}^{k}} 的某个邻域 U V {\displaystyle U\subset V} 确实有每个坐标邻域中的局部平凡化。至此,要证明这个表面上的纤维丛是真正的纤维丛,只需证明它在坐标变换下有非奇异的变换函数。令 ( y i ) : M R n {\displaystyle (y^{i}):M\rightarrow {\mathbb {R} }^{n}} 上的局部坐标中的泰勒级数来表达一个曲线的射流。

现在可以定义从流形到流形的函数的射流了。

设和为两个光滑流形。令为一点。考虑由定义在的某个邻域中的光滑映射 f : M N {\displaystyle f:M\rightarrow N} 和称为的,若对于每条穿过的曲线γ(按此处常规,这表示一个使得 γ ( 0 ) = p {\displaystyle \gamma (0)=p} 的某个领域上有 J 0 k ( f γ ) = J 0 k ( g γ ) {\displaystyle J_{0}^{k}(f\circ \gamma )=J_{0}^{k}(g\circ \gamma )} 不需要有代数结构, J p k ( M , N ) {\displaystyle J_{p}^{k}(M,N)} 附近的光滑函数,则我们定义在的阶射流 J p k f {\displaystyle J_{p}^{k}f} E p k {\displaystyle E_{p}^{k}} 为流形上的有限维光滑向量丛,其投影为 π : E M {\displaystyle \pi :E\rightarrow M} 的截面为满足 π s {\displaystyle \pi \circ s} 上的恒等自同构的光滑函数 s : M E {\displaystyle s:M\rightarrow E} 在的一个邻域上的射流就是从到的光滑函数在点的射流。

这些在点的射流的空间记为 J p k ( M , E ) {\displaystyle J_{p}^{k}(M,E)} 的截面的射流有继承自截面本身的向量空间结构的向量空间结构。随着在上变化,射流空间 J p k ( M , E ) {\displaystyle J_{p}^{k}(M,E)} 上的丛,也就是的阶射流丛,记为()。

参看微分算子#坐标无关表述。

相关

  • 激动剂激动剂(或称:刺激剂/促进剂/激活剂)(英语:agonist)是与受体结合并使之激活,产生生理反应的化合物。激动剂按来源分为内源激动剂和外源(英语:exogenous)激动剂,按效能分为完全激动剂、超
  • 克拉伦斯·詹森克拉伦斯·伦纳德“凯利”约翰逊(Clarence Leonard "Kelly" Johnson,1910年2月27日-1990年12月21日)是一名美国的系统工程师和航空创新者。他使他自己赢得了许多值得注意的飞机
  • 保罗·蒂贝茨小保罗·沃菲尔德·蒂贝茨(英语:Paul Warfield Tibbets, Jr.,1915年2月23日-2007年11月1日),美国空军准将。以驾驶史上第一架投掷原子弹的轰炸机艾诺拉·盖伊号而闻名。他在日本广
  • 怀斯罗伯特·怀斯(英语:Robert Wise,1914年9月10日-2005年9月14日),美国好莱坞著名导演及制作人。1914年美国印第安纳州出生,年少时因抑郁症而辍学,后得兄弟帮助,在摄影棚找到一份工作,193
  • 地獄之樹见本文。猴面包树属(学名:)是锦葵目锦葵科的植物,又称猢狲木属。共包括8种:土生在非洲大陆(1种)、马达加斯加(6种)和澳洲(1种)。落叶乔木,猴面包树高达5~30米。其树枝长得像树根一样,树干
  • 黄克孙黄克孙(英文名:Kerson Huang,1928年3月15日-2016年9月1日),生于中国广西南宁,在菲律宾马尼拉长大。美籍华裔物理学家、翻译家,曾任麻省理工学院物理学教授,出版统计力学的著作。他是
  • 克拉布奥查德 (肯塔基州)克拉布奥查德(英语:Crab Orchard),是美国肯塔基州的一座城市。面积约为4.7平方公里(1.8平方英里)。根据2010年美国人口普查,该市的人口为841人。
  • 莎莎·嘉宝莎莎·嘉宝(英语:Zsa Zsa Gabor,1917年2月6日-2016年12月18日),犹太人,美国老牌影视演员。也是除乔治·索罗斯之外,另一位拥有犹太人血统的著名匈牙利裔美国人。莎莎·嘉宝与同为演
  • 尤哈尼·阿霍尤哈尼·阿霍(芬兰语:Juhani Aho,1861年9月11日-1921年8月8日)是首批用芬兰语长期创作的芬兰职业作家和记者。他的文学生涯长达40多年。他曾被诺贝尔文学奖提名12次。
  • 顾佐 (尚书)《竹园寿集图》之顾佐像,明吕纪、吕文英合绘 现藏北京故宫博物院顾佐(1443年-1516年),字良弼,直隶凤阳府临淮县(今安徽省凤阳县)人,祖籍苏州,明朝政治人物,官至户部尚书。成化元年(1465