勒文海姆–斯科伦定理

✍ dations ◷ 2025-04-04 11:16:11 #勒文海姆–斯科伦定理
在数理逻辑中,经典 Löwenheim–Skolem 定理声称对于标识(signature)为 < C , F , R , σ > {displaystyle <mathbf {C} ,mathbf {F} ,mathbf {R} ,sigma >} 的任何可数一阶逻辑语言 L 和 L-结构 M,存在一个可数无限基本子结构 N ⊆ {displaystyle subseteq } ' 这个定理的自然和有用的推论是所有一致的 L-理论都有可数的模型。这里的标识由常量集合 C {displaystyle mathbf {C} } 、函数集合 F {displaystyle mathbf {F} } 、关系符号集合 R {displaystyle mathbf {R} } 、和表示函数和关系符号的元数的函数 σ : F ∪ R → N {displaystyle sigma :mathbf {F} cup mathbf {R} rightarrow mathbb {N} } 组成。在这个上下文中 L-结构,由底层集合(经常指示为“M”)和 L 的函数和关系符号的释义组成。L 的常量在 M 中的释义就是 M {displaystyle mathbf {M} } 的元素。类似的, σ ( f )   {displaystyle sigma (f) } -元函数 f ∈ F {displaystyle fin mathbf {F} } 被指派为 M 中的 σ ( f )   {displaystyle sigma (f) } -元函数 M σ ( f ) → M {displaystyle M^{sigma (f)}rightarrow M} 的图,而 σ ( R )   {displaystyle sigma (R) } -元关系 R ∈ R {displaystyle Rin mathbf {R} } 的释义被指派为 M 中的 σ ( R )   {displaystyle sigma (R) } -元关系。语言 L 是可数的,如果在 L 中的常量、函数和关系符号是可数的。一个周知的不可数模型是所有实数的集合,带有次序关系 "<" 作为唯一的关系,和加法与乘法作为函数。有序域的公理是一阶句子;最小上界公理不是一阶的而是二阶的。这个定理蕴涵了实数域的某个可数无限的子域,因此不同于实数域,但满足了实数域所满足的所有一阶句子。(作为可数的有序域,它不能满足最小上界公理)。例如,特定多项式方程有解(在这个模型中)的断言是一阶句子,因此在断言了其存在的可数子模型中是真的,当且仅当它在实数域中是真的。数学家考虑的多数数学结构,特别是多数范畴的多数成员,是这里定义意义上的模型。Löwenheim–Skolem 定理告诉我们如果它们是不可数的,它们不能被任何一阶句子的集合唯一性的选取出来。对于在模型 M 中为真的如下形式的一阶句子或有一个Skolem 函数 f,就是说映射 x 到断言了其存在的 y 的函数,使得在 M 中为真。因为有很多这样的 y 的值,必须启用选择公理来推出 Skolem 函数的存在。这个模型的某些成员可以直接用一阶公式来定义,就是说,它们的存在被如下形式的句子所断言并且因为只有可数多个一阶公式,只有可数多个成员可以用这种方式直接定义。证明的想法是: 开始于这个模型的所有一阶可定义成员的集合,并接着在所有 Skolem 函数下闭合它。这个闭包必定最多是可数无限的。这个模型的子集是这个定理断言了其存在的子模型。上述定理假定了有限或可数无限的语言。更一般的 Löwenheim-Skolem 定理做其他有关基数的假定。类似于这个经典定理的某些定理,断言更小的子模型的存在(“向下” Löwenheim-Skolem 定理);其他一些断言更大基数的模型的存在(“向上” Löwenheim-Skolem 定理)。勒文海姆-斯科伦定理: 如果 Δ {displaystyle Delta } 是一个含有有限可数个数的命题组成的集合,并且集合 Δ {displaystyle Delta } 是可以满足的( Δ {displaystyle Delta } SAT),那么至少存在一个模型(或叫作指派,或叫作解释(Interpretation)) 用符号记作 I, I ⊨ Δ {displaystyle Imodels Delta } ,且这个模型 I 指派解释也是可数的证明:

相关

  • 不宁腿综合征不宁腿綜合症(英语:Restless legs syndrome, RLS),又称睡眠腿动症、不安腿综合征、腿不宁綜合症、Willis-Ekbom病或Wittmaack-Ekbom綜合症是一种强烈想要让腿部移动的障碍。平常
  • 脓疮脓疡(拉丁语:abscessus; 德语:Abszess; 法语:Abcès; 英语:Abscess)又称作脓疮、脓肿。指的是在身体组织中蓄积的脓。接近体表的脓疡会有红、肿、热、痛等症状,触诊病灶时感觉其内
  • 胫骨胫骨,位于小腿内侧,是小腿上的两块长骨之一。胫骨的大小居人体第二位,仅次于股骨。胫骨对支持人体体重起重要作用。胫骨上端膨大,与股骨下端以及髌骨共同构成膝关节。胫骨内侧面
  • 国际海洋法法庭国际海洋法法庭(英语:International Tribunal for the Law of the Sea,缩写ITLOS),是根据《联合国海洋法公约》建立的一个法律组织。始建于1996年,总部位于德国汉堡市,是专门审理海
  • 硝呋莫司硝呋莫司(Nifurtimox)是用于治疗恰加斯病及非洲人类锥虫病的药物。此外,此药也可与依氟鸟氨酸(eflornithine)共同使用在治疗睡眠障碍患者的硝呋莫司-依氟鸟氨酸疗程(英语:nifurtimo
  • 南极洲/南极地方南极洲(英语:Antarctica)是地球最南端的洲,位于南半球的南极区,是地理南极的所在地。南极洲大部分区域都在南极圈内,四周被南冰洋环绕。南极洲是世界上的第五大洲,其面积约为1400万
  • Boston新英格兰波士顿(英语:Boston)为美国马萨诸塞联邦(英语:Commonwealth (U.S. state))首府,占地面积 48平方英里(124 km2),2018年居民总数为694,583位,是马萨诸塞乃至新英格兰地区人口最
  • 置信区间在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于
  • 意识不清.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 达芬奇列奥纳多·达·芬奇(意大利语:Leonardo da Vinci;儒略历1452年4月15日-1519年5月2日),又译达文西,全名列奥纳多·迪·瑟皮耶罗·达·芬奇(Leonardo di ser Piero da Vinci,意为“芬奇