首页 >
勒文海姆–斯科伦定理
✍ dations ◷ 2025-09-13 10:56:24 #勒文海姆–斯科伦定理
在数理逻辑中,经典 Löwenheim–Skolem 定理声称对于标识(signature)为
<
C
,
F
,
R
,
σ
>
{displaystyle <mathbf {C} ,mathbf {F} ,mathbf {R} ,sigma >}
的任何可数一阶逻辑语言 L 和 L-结构 M,存在一个可数无限基本子结构 N
⊆
{displaystyle subseteq }
'
这个定理的自然和有用的推论是所有一致的 L-理论都有可数的模型。这里的标识由常量集合
C
{displaystyle mathbf {C} }
、函数集合
F
{displaystyle mathbf {F} }
、关系符号集合
R
{displaystyle mathbf {R} }
、和表示函数和关系符号的元数的函数
σ
:
F
∪
R
→
N
{displaystyle sigma :mathbf {F} cup mathbf {R} rightarrow mathbb {N} }
组成。在这个上下文中 L-结构,由底层集合(经常指示为“M”)和 L 的函数和关系符号的释义组成。L 的常量在 M 中的释义就是
M
{displaystyle mathbf {M} }
的元素。类似的,
σ
(
f
)
{displaystyle sigma (f) }
-元函数
f
∈
F
{displaystyle fin mathbf {F} }
被指派为 M 中的
σ
(
f
)
{displaystyle sigma (f) }
-元函数
M
σ
(
f
)
→
M
{displaystyle M^{sigma (f)}rightarrow M}
的图,而
σ
(
R
)
{displaystyle sigma (R) }
-元关系
R
∈
R
{displaystyle Rin mathbf {R} }
的释义被指派为 M 中的
σ
(
R
)
{displaystyle sigma (R) }
-元关系。语言 L 是可数的,如果在 L 中的常量、函数和关系符号是可数的。一个周知的不可数模型是所有实数的集合,带有次序关系 "<" 作为唯一的关系,和加法与乘法作为函数。有序域的公理是一阶句子;最小上界公理不是一阶的而是二阶的。这个定理蕴涵了实数域的某个可数无限的子域,因此不同于实数域,但满足了实数域所满足的所有一阶句子。(作为可数的有序域,它不能满足最小上界公理)。例如,特定多项式方程有解(在这个模型中)的断言是一阶句子,因此在断言了其存在的可数子模型中是真的,当且仅当它在实数域中是真的。数学家考虑的多数数学结构,特别是多数范畴的多数成员,是这里定义意义上的模型。Löwenheim–Skolem 定理告诉我们如果它们是不可数的,它们不能被任何一阶句子的集合唯一性的选取出来。对于在模型 M 中为真的如下形式的一阶句子或有一个Skolem 函数 f,就是说映射 x 到断言了其存在的 y 的函数,使得在 M 中为真。因为有很多这样的 y 的值,必须启用选择公理来推出 Skolem 函数的存在。这个模型的某些成员可以直接用一阶公式来定义,就是说,它们的存在被如下形式的句子所断言并且因为只有可数多个一阶公式,只有可数多个成员可以用这种方式直接定义。证明的想法是: 开始于这个模型的所有一阶可定义成员的集合,并接着在所有 Skolem 函数下闭合它。这个闭包必定最多是可数无限的。这个模型的子集是这个定理断言了其存在的子模型。上述定理假定了有限或可数无限的语言。更一般的 Löwenheim-Skolem 定理做其他有关基数的假定。类似于这个经典定理的某些定理,断言更小的子模型的存在(“向下” Löwenheim-Skolem 定理);其他一些断言更大基数的模型的存在(“向上” Löwenheim-Skolem 定理)。勒文海姆-斯科伦定理: 如果
Δ
{displaystyle Delta }
是一个含有有限可数个数的命题组成的集合,并且集合
Δ
{displaystyle Delta }
是可以满足的(
Δ
{displaystyle Delta }
SAT),那么至少存在一个模型(或叫作指派,或叫作解释(Interpretation)) 用符号记作 I,
I
⊨
Δ
{displaystyle Imodels Delta }
,且这个模型 I 指派解释也是可数的证明:
相关
- ICD-9编码列表 (520–579)Template:Developmental tooth disease Template:Acquired tooth disease Template:Dentofacial anomalies and jaw disease Template:Oral pathology
- 头孢唑肟头孢唑肟(英文名Ceftizoxime)也称为“安保速灵”“安普西林”“头孢去甲噻肟”“去甲噻肟头孢菌素”或“去甲酰氧甲基唑肟头孢菌素”,是一种不经肠的第三代头孢菌素,常以头孢唑
- 伪真菌总门伪真菌总门(Pseudofungi)是一个不等鞭毛类的子类群,又被称为丝壶菌总门(Heterokontimycotina) ,由卵菌纲和丝壶菌纲组成。虽然它们的生长形式(菌丝)和营养模式类似于真菌,但大量的生
- 模式种模式种(type species (species typica))是生物分类学上的一个名词,是用来代表一个属或属以下分类群的物种,又称典型种。模式种可以指示出该生物分类单元下的生物学特征,它既是一
- 行为经济学行为经济学(英语:Behavioral economics),经济学的一个分支,承袭经验主义,并受到心理学与认知科学的影响,探讨社会、认知与情感的因素,与个人及团体形成经济决策的背后原因,并从而了解
- 收入越不平均贫富差距(亦称为贫富不均、经济不平等和国民收入不均等)是指一个群体里面每个人之间的经济资产(财富)及收入的分配不均等。本用词一般是指一个社会里面个人或群体之间的收入差距
- 5世纪401年1月1日至500年12月31日的这一段期间被称为5世纪。以下是公元5世纪世界各地主要政权:667877
- 百年战争百年战争(英语:Hundred Years' War;法语:Guerre de Cent Ans)是1337年至1453年期间,发生在金雀花王朝治下的英格兰王国和瓦卢瓦王朝治下的法兰西王国之间,针对法兰西王国统治权的战
- 闭元音表内成对的元音分别为不圆唇/圆唇。闭元音(close vowel、high vowel(美国使用))是元音的一种,特征是舌头的位置尽可能接近上颚,而不产生属于辅音的过狭收缩。这个限定是由国际语
- 把字句把字句,是汉语中的一种主动式动词谓语句。这种句式又称为处置式,因为动词所表示的动作对宾语作出了“处置”,例如使其位置或状态改变。基本的结构为:主语+“把/将”+宾语+动作。汉