勒文海姆–斯科伦定理

✍ dations ◷ 2025-11-17 15:13:42 #勒文海姆–斯科伦定理
在数理逻辑中,经典 Löwenheim–Skolem 定理声称对于标识(signature)为 < C , F , R , σ > {displaystyle <mathbf {C} ,mathbf {F} ,mathbf {R} ,sigma >} 的任何可数一阶逻辑语言 L 和 L-结构 M,存在一个可数无限基本子结构 N ⊆ {displaystyle subseteq } ' 这个定理的自然和有用的推论是所有一致的 L-理论都有可数的模型。这里的标识由常量集合 C {displaystyle mathbf {C} } 、函数集合 F {displaystyle mathbf {F} } 、关系符号集合 R {displaystyle mathbf {R} } 、和表示函数和关系符号的元数的函数 σ : F ∪ R → N {displaystyle sigma :mathbf {F} cup mathbf {R} rightarrow mathbb {N} } 组成。在这个上下文中 L-结构,由底层集合(经常指示为“M”)和 L 的函数和关系符号的释义组成。L 的常量在 M 中的释义就是 M {displaystyle mathbf {M} } 的元素。类似的, σ ( f )   {displaystyle sigma (f) } -元函数 f ∈ F {displaystyle fin mathbf {F} } 被指派为 M 中的 σ ( f )   {displaystyle sigma (f) } -元函数 M σ ( f ) → M {displaystyle M^{sigma (f)}rightarrow M} 的图,而 σ ( R )   {displaystyle sigma (R) } -元关系 R ∈ R {displaystyle Rin mathbf {R} } 的释义被指派为 M 中的 σ ( R )   {displaystyle sigma (R) } -元关系。语言 L 是可数的,如果在 L 中的常量、函数和关系符号是可数的。一个周知的不可数模型是所有实数的集合,带有次序关系 "<" 作为唯一的关系,和加法与乘法作为函数。有序域的公理是一阶句子;最小上界公理不是一阶的而是二阶的。这个定理蕴涵了实数域的某个可数无限的子域,因此不同于实数域,但满足了实数域所满足的所有一阶句子。(作为可数的有序域,它不能满足最小上界公理)。例如,特定多项式方程有解(在这个模型中)的断言是一阶句子,因此在断言了其存在的可数子模型中是真的,当且仅当它在实数域中是真的。数学家考虑的多数数学结构,特别是多数范畴的多数成员,是这里定义意义上的模型。Löwenheim–Skolem 定理告诉我们如果它们是不可数的,它们不能被任何一阶句子的集合唯一性的选取出来。对于在模型 M 中为真的如下形式的一阶句子或有一个Skolem 函数 f,就是说映射 x 到断言了其存在的 y 的函数,使得在 M 中为真。因为有很多这样的 y 的值,必须启用选择公理来推出 Skolem 函数的存在。这个模型的某些成员可以直接用一阶公式来定义,就是说,它们的存在被如下形式的句子所断言并且因为只有可数多个一阶公式,只有可数多个成员可以用这种方式直接定义。证明的想法是: 开始于这个模型的所有一阶可定义成员的集合,并接着在所有 Skolem 函数下闭合它。这个闭包必定最多是可数无限的。这个模型的子集是这个定理断言了其存在的子模型。上述定理假定了有限或可数无限的语言。更一般的 Löwenheim-Skolem 定理做其他有关基数的假定。类似于这个经典定理的某些定理,断言更小的子模型的存在(“向下” Löwenheim-Skolem 定理);其他一些断言更大基数的模型的存在(“向上” Löwenheim-Skolem 定理)。勒文海姆-斯科伦定理: 如果 Δ {displaystyle Delta } 是一个含有有限可数个数的命题组成的集合,并且集合 Δ {displaystyle Delta } 是可以满足的( Δ {displaystyle Delta } SAT),那么至少存在一个模型(或叫作指派,或叫作解释(Interpretation)) 用符号记作 I, I ⊨ Δ {displaystyle Imodels Delta } ,且这个模型 I 指派解释也是可数的证明:

相关

  • 反义词反义词或相反词是语言学上的现象,指的是某一对字或单词具有相反意义或定义,如“有”和“无”、“爱”和“恨”、“冷”和“热”都是反义词。一种语言中的所有词汇不一定都有对
  • 趋化性趋化性(英语:Chemotaxis,亦被称为化学趋向性)是趋向性的一种,指身体细胞、细菌及其他单细胞、多细胞生物依据环境中某些化学物质而趋向的运动(详细请看细胞迁移)。这对细菌寻找食物
  • 趋性趋性(英语:taxis,或称为趋向性)是一生物(或细胞)天生的行为反应,指其对一指向性刺激(由特定方向给的刺激),而会有趋进(正趋性)或远离(负趋性)刺激源的动作。趋性和向性不同,生物的
  • 先天异常先天性障碍,又称先天性疾病、先天畸形、先天缺陷,是指发育中的胎儿因为遗传性疾病或发育环境等因素导致某个部位特征结构畸形,导致在婴儿出生时即有的病症,包括了身体(英语:Physic
  • 购买力平价购买力平价(英语:Purchasing Power Parity,缩写PPP),是一种根据各国不同的价格水平计算出来的货币之间的等值系数,使我们能够在经济学上对各国的国内生产总值进行合理比较,这种理论
  • UniProtUniProt(联合的蛋白)是一个全面的,高质量的,免费使用的蛋白质序列与功能信息数据库,许多内容来自基因组计划,它还包含了大量来自研究文献的关于蛋白的生物学功能信息。UniProt共同
  • 医师誓词希波克拉底誓词(希腊语:Όρκος του Ιπποκράτη,英语:Hippocratic Oath),俗称医师誓词,是西方医生传统上行医前的誓言,希波克拉底乃古希腊医者,被誉为西方“医学之父”
  • 方舱医院方舱医院是一种以方舱形式快速建成的模块化医院,这里指的是直接透过征用空间进行设置的大型医疗隔离所,有些甚至是大型活动场地与休课高校改建的。由于2019冠状病毒病疫情的爆
  • 家庭照顾假家庭照顾假指的是日本、加拿大、台湾等国家,规定员工可以因家庭成员需照顾,而向雇主请假。中华民国性别工作平等法,规定员工可以因家庭成员需照顾,而向雇主请假。家庭照顾假并入
  • 字母系统字母系统是拼音文字系统当中最小的,数量最少的区别性单位,即字位,如拉丁字母源自拉丁语采用的字母、阿拉伯字母源自阿拉伯语采用的字母。字母系统的特点是字母大致上对应该语言