勒文海姆–斯科伦定理

✍ dations ◷ 2025-04-02 09:23:58 #勒文海姆–斯科伦定理
在数理逻辑中,经典 Löwenheim–Skolem 定理声称对于标识(signature)为 < C , F , R , σ > {displaystyle <mathbf {C} ,mathbf {F} ,mathbf {R} ,sigma >} 的任何可数一阶逻辑语言 L 和 L-结构 M,存在一个可数无限基本子结构 N ⊆ {displaystyle subseteq } ' 这个定理的自然和有用的推论是所有一致的 L-理论都有可数的模型。这里的标识由常量集合 C {displaystyle mathbf {C} } 、函数集合 F {displaystyle mathbf {F} } 、关系符号集合 R {displaystyle mathbf {R} } 、和表示函数和关系符号的元数的函数 σ : F ∪ R → N {displaystyle sigma :mathbf {F} cup mathbf {R} rightarrow mathbb {N} } 组成。在这个上下文中 L-结构,由底层集合(经常指示为“M”)和 L 的函数和关系符号的释义组成。L 的常量在 M 中的释义就是 M {displaystyle mathbf {M} } 的元素。类似的, σ ( f )   {displaystyle sigma (f) } -元函数 f ∈ F {displaystyle fin mathbf {F} } 被指派为 M 中的 σ ( f )   {displaystyle sigma (f) } -元函数 M σ ( f ) → M {displaystyle M^{sigma (f)}rightarrow M} 的图,而 σ ( R )   {displaystyle sigma (R) } -元关系 R ∈ R {displaystyle Rin mathbf {R} } 的释义被指派为 M 中的 σ ( R )   {displaystyle sigma (R) } -元关系。语言 L 是可数的,如果在 L 中的常量、函数和关系符号是可数的。一个周知的不可数模型是所有实数的集合,带有次序关系 "<" 作为唯一的关系,和加法与乘法作为函数。有序域的公理是一阶句子;最小上界公理不是一阶的而是二阶的。这个定理蕴涵了实数域的某个可数无限的子域,因此不同于实数域,但满足了实数域所满足的所有一阶句子。(作为可数的有序域,它不能满足最小上界公理)。例如,特定多项式方程有解(在这个模型中)的断言是一阶句子,因此在断言了其存在的可数子模型中是真的,当且仅当它在实数域中是真的。数学家考虑的多数数学结构,特别是多数范畴的多数成员,是这里定义意义上的模型。Löwenheim–Skolem 定理告诉我们如果它们是不可数的,它们不能被任何一阶句子的集合唯一性的选取出来。对于在模型 M 中为真的如下形式的一阶句子或有一个Skolem 函数 f,就是说映射 x 到断言了其存在的 y 的函数,使得在 M 中为真。因为有很多这样的 y 的值,必须启用选择公理来推出 Skolem 函数的存在。这个模型的某些成员可以直接用一阶公式来定义,就是说,它们的存在被如下形式的句子所断言并且因为只有可数多个一阶公式,只有可数多个成员可以用这种方式直接定义。证明的想法是: 开始于这个模型的所有一阶可定义成员的集合,并接着在所有 Skolem 函数下闭合它。这个闭包必定最多是可数无限的。这个模型的子集是这个定理断言了其存在的子模型。上述定理假定了有限或可数无限的语言。更一般的 Löwenheim-Skolem 定理做其他有关基数的假定。类似于这个经典定理的某些定理,断言更小的子模型的存在(“向下” Löwenheim-Skolem 定理);其他一些断言更大基数的模型的存在(“向上” Löwenheim-Skolem 定理)。勒文海姆-斯科伦定理: 如果 Δ {displaystyle Delta } 是一个含有有限可数个数的命题组成的集合,并且集合 Δ {displaystyle Delta } 是可以满足的( Δ {displaystyle Delta } SAT),那么至少存在一个模型(或叫作指派,或叫作解释(Interpretation)) 用符号记作 I, I ⊨ Δ {displaystyle Imodels Delta } ,且这个模型 I 指派解释也是可数的证明:

相关

  • 拟杆菌门拟杆菌门(Bacteroidetes)包括三大类细菌,即拟杆菌纲、黄杆菌纲、鞘脂杆菌纲。它们的相似性体现在核糖体16S RNA。很多拟杆菌纲的细菌种类生活在人或者动物的肠道中,有些时候成
  • 癫痫持续状态癫痫重积状态(拉丁语:Status epilepticus (SE))的定义是一次癫痫发作超过五分钟、或是五分钟内癫痫发作超过一次且每次发作之间没有回复到正常状态。这种癫痫发作的状态可能是
  • 菌株分型(strain)是生物学分类使用的概念。指病毒的毒株。例如,不同的流感毒株的感染性不同。细菌或真菌的菌株。是具有不同基因型并能稳定遗传的亚型。植物学与农学的品系,指源自共
  • 体外In vitro是拉丁语中“在玻璃里”的意思,意指进行或发生于试管内的实验与实验技术。更广义的意思,则指活生物体之外的环境中的操作。常见的例子是人工受精。在细胞生物学等领域
  • IL31JLI3562n/aENSG00000164399n/aP08700n/aNM_000588n/aNP_000579n/a白细胞介素3(英语:Interleukin 3,IL-3)是一种蛋白质,在人体中由IL 3 基因编码。白细胞介素3是白介素,一个类生
  • 发展心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 罗素的茶壶对宗教的批评 · 自由思想反教权主义 · 反宗教虚构宗教罗素的茶壶(英语:Russell's teapot)或称天体茶壶(英语:Celestial Teapot)、宇宙中的茶壶(英语:Cosmic Teapot),是由哲学家伯特
  • 恶性鳞状上皮细胞肿瘤鳞状细胞癌(Squamous-cell carcinoma, SCC, SqCC),有时也被称之为表皮样癌(epidermoid carcinoma)或鳞状细胞上皮瘤(squamous cell epithelioma),是一类上皮组织细胞、鳞状细胞产生
  • 国务大臣政治主题国务大臣(日语:国務大臣/こくむだいじん kokumudaijin ?)是日本内阁成员的正式称呼,简称“大臣”,一般也称之为“阁僚”或“阁员”,相当于共和制内阁的部长,如外务大臣、
  • 埃及语族埃及语(圣书体: