基本多边形

✍ dations ◷ 2025-08-16 19:25:10 #共形几何,黎曼曲面,几何拓扑学,多边形

在数学上,每个闭曲面在几何拓扑的意义下,可以由一个偶数条边的有向多边形,把它的边成对地粘合构造出来,这样的多边形称之为基本多边形(fundamental polygon)。

这个构造可以表示成一个长为2的字符串,一共个不同的符号,每个符号出现两次带有指数 +1或 -1。指数 -1的符号对应于该边的定向与基本多边形的定向相反。

上图中标有相同字母的两条边,沿着箭头方向粘合。

对标准对称形状,多边形的边可以理解为一个群的生成元。然后这个多边形,写成群元素形式,成为由这些边生成的自由群上一个约束,给出有一个约束的群呈示。

因此,例如给定欧几里得平面 R 2 {\displaystyle \mathbb {R} ^{2}} 可定向闭曲面有如下标准基本多边形:

(不可定向)亏格的不可定向闭曲面有如下标准基本多边形:

或者,不可定向曲面能由两种形式给出,亏格 克莱因瓶与亏格 实射影平面。亏格2克莱因瓶由一个4边形给出

(注意最后的 B n {\displaystyle B_{n}} +1射影平面由一个4+2边形给出

最后两类情形穷尽了所有可能的不可定向曲面,这是昂利·庞加莱证明的。

一个(双曲)紧黎曼曲面的基本多边形有许多重要的性质,将曲面与它的富克斯模型(Fuchsian model)联系起来。即一个双曲紧黎曼曲面可以上半平面做为万有覆叠,从而可以表示为一个商流形H/Γ,这里 Γ是一个非阿贝尔群同构于曲面的甲板变换群(deck transformation group)。商空间的陪集有标准多边形做为代表元素。在下面,注意所有黎曼曲面都是可定向的。

给定上半平面H中一点 z 0 {\displaystyle z_{0}} 是上半平面的双曲度量。度量基本多边形有时也称为狄里克雷区域(Dirichlet region)或沃罗诺伊多边形(Voronoi polygon)。

给定任何度量基本多边形,用有限步可以构造另一个基本多边形,标准基本多边形(standard fundamental polygon),它具有额外一组值得注意的性质:

上面的构造足够保证多边形的每条边在流形H/Γ中是一个闭(非平凡)环路。就其本身而言,每条边可以为基本群 π 1 ( H / Γ ) {\displaystyle \pi _{1}(\mathbb {H} /\Gamma )} 个生成元素 A 1 , B 1 , A 2 , B 2 , A n B n {\displaystyle A_{1},B_{1},A_{2},B_{2},\cdots A_{n}B_{n}}

度量基本多边形与标准多边形通常有不同的边数。比如,环面的标准基本多边形是一个基本平行四边形(fundamental parallelogram)。相比而言,度量基本多边形有六条边,是一个六边形。只需注意到六边形的边垂直平分平行四边形的边就可以看出来。这就是,取格中一点,然后考虑连接这点与邻点的直线之集合。每个这样的线被另一条垂直线平分,被这样的第二个线集合围住的最小的空间是一个六边形。

事实后,上一个构造一般都可行:取一点,然后对Γ中,考虑与之间的测地线。平分这些测地线是另一个曲线集合,这些点的轨迹与和距离相等。由第二个线集合围住的最小区域是度量基本多边形。

标准基本多边形的面积是 4 π ( n 1 ) {\displaystyle 4\pi (n-1)} 是黎曼曲面的亏格(等价于4是多边形的边数)。由于标准多边形是H/Γ的一个代表,黎曼曲面的整个面积等于标准多边形的面积。这个面积公式由高斯-博内定理得出,在某种意义下黎曼-赫尔维茨公式(Riemann-Hurwitz formula)是其推广。

对标准多边形可以给出具体表达式。一个更有用的形式是使用与这个标准多边形关联的群 Γ {\displaystyle \Gamma } 定向曲面,群可由2格生成元 a k {\displaystyle a_{k}} 给出。这些生成元由下列分式线性变换作用在上半平面给出。

0 k < 2 n {\displaystyle 0\leq k<2n}

参数由

以及

给出。可以验证这些生成元服从约束

这给出整个群呈示。

在高维,基本多变形的想法体现为齐性空间。

相关

  • 梵蒂冈梵蒂冈宗座图书馆(拉丁语:Bibliotheca Apostolica Vaticana)是圣座的官方图书馆,一般简称为梵蒂冈图书馆。它于1475年建立,位于梵蒂冈城的梵蒂冈博物馆旁。其为世界上手抄本收藏
  • 稳定岛稳定岛理论是核子物理中的一个理论推测,核物理学家推测原子核的质子数和中子数为“幻数”的超重元素会特别稳定。假如这个猜测正确的话,那么某些特定的超重元素的同位素将比其
  • 新斯的明新斯的明(英语:Neostigmine)是一种拟副交感神经药,其作用机理是作为一种易逆乙酰胆碱酯酶抑制药。
  • 盆地群代盆地群代是指月球地质时代中前酒神代的九个非正式的时代区分。创建一个盆地群代分类的原因是为了要将30个前酒神代因陨石碰撞而形成的盆地分成9个相对的时代类群。每个类群
  • 异氰酸异氰酸分子式HNCO,为氰酸的互变异构体。异氰酸可以通过C3H3N3O3 → 3 HNCO由三聚氰酸制取。加入水时,通过HNCO + H2O → CO2 + NH3分解为CO2及NH3。
  • 伊夫·圣罗兰伊夫·圣罗兰(法语:Yves Saint Laurent,缩写YSL,现时名为Saint Laurent Paris)是奢侈的时装品牌,由设计师伊夫·圣罗兰及其伴侣贝尔杰所创立。风格精致高雅,之前的主要设计师为Hedi
  • 澳大利亚城市人口列表澳大利亚城市人口列表主要是提供澳大利亚三种类型的人口数据,并依照人口大小次序列出各城排名。统计数据如下:澳大利亚统计局予统计分区(Statistical Divisions/SDs)的定义是‘受
  • 环辛四烯三羰基铁环辛四烯三羰基铁是一种有机铁化合物,化学式为(C8H8)Fe(CO)3。它和其它(二烯)Fe(CO)3配合物一样,是反磁性的橙色固体。尽管它的一些异构体有可能存在,目前只观测到了η4-C8H8的
  • 马克·巴特勒马克·巴特勒(Mark Butler,1970年7月8日-)是一位澳洲政治人物,他的党籍是澳洲工党。自2007年开始,他是阿德莱德港选区选出的澳大利亚众议院的议员。他曾经在陆克文和吉拉德政府中
  • 琉球放送琉球放送株式会社(日语:琉球放送株式会社,りゅうきゅうほうそう,英语:Ryukyu Broadcasting Corporation),通称琉球放送(日语:琉球放送)、RBC,是日本的一家以冲绳县为播出范围的广电兼营