消失动量

✍ dations ◷ 2024-12-23 00:54:31 #

消失动量(Vanishing Moments),在连续小波变换(Continuous Wavelet Transform),是一项非常重要的参数,用来检视母小波(Mother wavelet)是否为高频的函数。

在连续小波变换中,母小波有4个主要限制如下。

1. 有值区间必须是有限的(Compact Support):

2. 必须是实函数(Real) :

3. 偶对称(Even Symmetric)或是奇对称(Odd Symmetric)

4. 消失动量越高越好:

首先定义第 k {\displaystyle k} 个动量( k t h {\displaystyle k_{th}} moment):

                              m                      k                          =                          t                      k                          ψ        (        t        )                d        t              {\displaystyle m_{k}=\int t^{k}\psi (t)\,dt}  

m 0 = m 1 = m 2 = . . . = m p 1 = 0 {\displaystyle m_{0}=m_{1}=m_{2}=...=m_{p-1}=0}

则我们说 ψ ( t ) {\displaystyle \psi (t)} p {\displaystyle p} 个消失动量。

我们可以看到 m k = t k ψ ( t ) d t {\displaystyle m_{k}=\int t^{k}\psi (t)\,dt} 不太好计算,尤其是 k {\displaystyle k} 很大的时候。

此时,可以善用傅立叶转换来进行计算。

首先,观察傅立叶转换的公式:

                    G        (        f        )        =                g        (        t        )                  e                                  j            2            π            f            t                                  d        t              {\displaystyle G(f)=\int g(t)e^{-j2\pi ft}\,dt}  

当令 f = 0 {\displaystyle f=0} 时,可以看到以上公式变成:

                    G        (        0        )        =                g        (        t        )                d        t              {\displaystyle G(0)=\int g(t)\,dt}  

正是第0个动量 m 0 {\displaystyle m_{0}}

因此,若要计算 g ( t ) {\displaystyle g(t)} 的第0个动量,可以先计算 g ( t ) {\displaystyle g(t)} 的傅立叶转换,再取直流项(也就是 f = 0 {\displaystyle f=0} )。

我们可以同样利用傅立叶转换来计算第 k {\displaystyle k} 个动量。

首先,傅立叶转换有一个性质: 在频域微分 k {\displaystyle k} 次,就相当于时域乘上 t k {\displaystyle t^{k}}  :

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        f        )        =                          t                      k                          g        (        t        )                  e                                  j            2            π            f            t                                  d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(f)=\int t^{k}g(t)e^{-j2\pi ft}\,dt}  

当令 f = 0 {\displaystyle f=0} 时,可以看到以上公式变成:

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        0        )        =                          t                      k                          g        (        t        )                d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(0)=\int t^{k}g(t)\,dt}  

正是第 k {\displaystyle k} 个动量 m k {\displaystyle m_{k}}

因此,若要计算 g ( t ) {\displaystyle g(t)} 的第k个动量,可以先计算 g ( t ) {\displaystyle g(t)} 的傅立叶转换的k次微分,再取直流项(也就是 f = 0 {\displaystyle f=0} )。

哈尔小波转换是最简单的一种小波转换,使用哈尔基底(Haar Basis)来做母小波。

而墨西哥帽函数(Mexican hat function)也常被用来当母小波。

哈尔基底的数学表示式如下:

                    ψ        (        t        )        =                              {                                                            1                                                                    0                                    t                  <                  1                                      /                                    2                  ,                                                                                                1                                                  1                                      /                                    2                                    t                  <                  1                  ,                                                                              0                                                                                            otherwise.                                                                                                                            {\displaystyle \psi (t)={\begin{cases}1\quad &0\leq t<1/2,\\-1&1/2\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}  

ψ ( t ) {\displaystyle \psi (t)} 是一个奇函数,所以

                              m                      0                          =                ψ        (        t        )                d        t        =        0              {\displaystyle m_{0}=\int \psi (t)\,dt=0}  

t ψ ( t ) {\displaystyle t\psi (t)} 是偶函数,所以

                              m                      1                          =                t        ψ        (        t        )                d        t                0              {\displaystyle m_{1}=\int t\psi (t)\,dt\neq 0}  

因此,哈尔基底的消失动量为1。

墨西哥帽函数的数学表示式:

                    ψ        (        t        )        =                                            2                              5                                  /                                4                                                    3                                      (        1                2        π                  t                      2                          )                  e                                  π                          t                              2                                                          {\displaystyle \psi (t)={\frac {2^{5/4}}{\sqrt {3}}}(1-2\pi t^{2})e^{-\pi t^{2}}}  

仔细观察, ψ ( t ) {\displaystyle \psi (t)} 其实是高斯函数的二次微分:

                    ψ        (        t        )        =        C                                            d                              2                                                    d                              t                                  2                                                                              e                                  π                          t                              2                                                    ,        C        =              {\displaystyle \psi (t)=C{\frac {d^{2}}{dt^{2}}}e^{-\pi t^{2}},C=}   常數。 

而高斯函数做傅立叶转换仍是高斯函数:

                    ψ        (        t        )        =        C                                            d                              2                                                    d                              t                                  2                                                                              e                                  π                          t                              2                                                                    C        4                  π                      2                                    f                      2                                    e                                  π                          f                              2                                                          {\displaystyle \psi (t)=C{\frac {d^{2}}{dt^{2}}}e^{-\pi t^{2}}\to -C4\pi ^{2}f^{2}e^{-\pi f^{2}}}  

利用

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        0        )        =                          t                      k                          g        (        t        )                d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(0)=\int t^{k}g(t)\,dt}  

可以算出

                              m                      0                          =                  m                      1                          =        0        ,                  m                      2                                  0              {\displaystyle m_{0}=m_{1}=0,m_{2}\neq 0}  

所以墨西哥帽函数的消失动量为2。

墨西哥帽函数是高斯函数的二次微分,所以消失动量为2。

                    ψ        (        t        )        =                                            d                              p                                                    d                              t                                  p                                                                              e                                  π                          t                              2                                                          {\displaystyle \psi (t)={\frac {d^{p}}{dt^{p}}}e^{-\pi t^{2}}}  

其傅立叶转换为

                    (        j        2        π        f                  )                      p                                    e                                  π                          f                              2                                                          {\displaystyle (j2\pi f)^{p}e^{-\pi f^{2}}}  

利用

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        0        )        =                          t                      k                          g        (        t        )                d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(0)=\int t^{k}g(t)\,dt}  

可以算出

                              m                      0                          =                  m                      1                          =                  m                      p                        1                          ,                  m                      p                                  0              {\displaystyle m_{0}=m_{1}=m_{p-1},m_{p}\neq 0}  

所以高斯函数p次微分的消失动量为p。

多贝西小波(Daubechies wavelet)、Symlet 都是一些常用的离散小波,而且都是由连续小波的离散系数推导而来。

                    2        n              {\displaystyle 2n}   點的多貝西小波,消失動量                     =        n              {\displaystyle =n}  

Symlet

                    2        n              {\displaystyle 2n}   點的Symlet,消失動量                     =        n              {\displaystyle =n}  

Symlet和多贝西小波非常类似,但是比多贝西小波还要对称。

消失动量是用以判断一个函数如何递减的指标。举例来说,对于函数

                    f        (        t        )        =                                            sin                            (              t              )                                      t                              2                                                          {\displaystyle f(t)={\frac {\sin(t)}{t^{2}}}}  

当输入值 t {\displaystyle t} 逐渐往无限大增加时,此函数会以 1 t 2 {\displaystyle {\frac {1}{t^{2}}}} 的速率递减。我们可用利用定义中的动量积分式 t k f ( t ) d t {\displaystyle \int _{-\infty }^{\infty }t^{k}f(t)\,dt} 来评估此函数的递减速率。

回到此范例中的函数,当 k = 0 {\displaystyle k=0} 时,由于分子 sin ( t ) {\displaystyle \sin(t)} 会在 {\displaystyle } 之间震荡,使得整个函数在 {\displaystyle } 震荡。

此性质使得 k = 0 {\displaystyle k=0} 时,

                                                                                                                                    t                      k                          (                                            sin                            (              t              )                                      t                              2                                                    )                d        t                0              {\displaystyle \int _{-\infty }^{\infty }t^{k}({\frac {\sin(t)}{t^{2}}})\,dt\to 0}   

函数积分式必定会收敛于0,代表第0个动量 m 0 = 0 {\displaystyle m_{0}=0}

k = 1 {\displaystyle k=1} 时,

                                                                                                                                    t                      k                          (                                            sin                            (              t              )                        t                          )                d        t        =        π              {\displaystyle \int _{-\infty }^{\infty }t^{k}({\frac {\sin(t)}{t}})\,dt=\pi }  

因此第1个动量 m 1 = π 0 {\displaystyle m_{1}=\pi \neq 0}

对于 k > 1 {\displaystyle k>1} 的情况,动量积分式均会随着 t {\displaystyle t\to \infty } 而发散。

由以上的范例,我们可借由能够让动量积分式收敛为0的最大 k {\displaystyle k} 值来判断函数的递减速率,而此最大 k {\displaystyle k} 值便是函数的消失动量。

在连续小波转换中,设计母小波的其中一个条件是有值区间比须是有限的,而母小波在有值区间内如何递减的特性,则可由消失动量来描述。

依照定义,小波母函数 ψ ( t ) {\displaystyle \psi (t)} p {\displaystyle p}

相关

  • 洪涛洪涛(1931年12月26日-),山东荣成人,中华人民共和国科学家、中国工程院院士。早年毕业于山东医学院,后进入罗马尼亚科学院病毒学研究所获博士学位。1971年,担任中国医学科学院流行病
  • 董奉董奉(200-280,一说220-280)字君异,号拔墘,又号杏林,侯官县董墘村(今福建省福州市长乐区古槐镇青山村)人。东汉末年及三国时代著名医师,与华佗、张仲景并称为“建安三神医”,医术记载较少
  • 父部,为汉字索引中的部首之一,康熙字典214个部首中的第八十八个(四划的则为第二十八个)。就繁体和简体中文中,父部归于四划部首。父部通常是从上方为部字。且无其他部首可用者将
  • 凤凰号凤凰号除指首次在火星确认有水存在的凤凰号火星探测器外,还指:《星际迷航》(Star Trek) 中的人类第一艘曲速飞船凤凰号,于2063年4月5日首飞。还有星舰舰级名:凤凰级星舰《星际迷航
  • 经济昆虫学动物学人类学 · 人与动物关系学 蜜蜂学 · 节肢动物学 医学节肢动物学 · 鲸类学 贝类学 · 昆虫学 动物行为学 · 蠕虫学 两栖爬行动物学 · 鱼类学 软体动物学 · 哺乳动
  • 柏林犹太博物馆纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 纳粹德军德国国防军(德语:Wehrmacht)是1935年至1945年间纳粹德国的军事力量,军种包括陆军、海军和空军,纳粹党的武装党卫队单位有时也从属于国防军。德国防军与纳粹党卫军兵数比例约国7党
  • 马山港坐标:35°11′N 128°33′E / 35.183°N 128.550°E / 35.183; 128.550马山市(韩语:마산시),曾经是大韩民国庆尚南道南部的一个城市,约在釜山以西35公里。古名合浦,元世祖忽必列曾
  • 兰德·保罗兰德·保罗(英语:Rand Paul;1963年1月7日-),全名兰德尔·霍华德·“兰德”·保罗(英语:Randal Howard "Rand" Paul),美国肯塔基州医生与政治人物;于2011年代表共和党当选美国参议员至今
  • 西经170度线所有坐标的地图 - OSM 所有坐标的地图 - Google 所有上至200个坐标的地图 - Bing西经170度线,是本初子午线向西170度的经线,是为西经170°。该经线穿过的大部分地区为海洋。此