消失动量

✍ dations ◷ 2025-09-08 22:34:26 #

消失动量(Vanishing Moments),在连续小波变换(Continuous Wavelet Transform),是一项非常重要的参数,用来检视母小波(Mother wavelet)是否为高频的函数。

在连续小波变换中,母小波有4个主要限制如下。

1. 有值区间必须是有限的(Compact Support):

2. 必须是实函数(Real) :

3. 偶对称(Even Symmetric)或是奇对称(Odd Symmetric)

4. 消失动量越高越好:

首先定义第 k {\displaystyle k} 个动量( k t h {\displaystyle k_{th}} moment):

                              m                      k                          =                          t                      k                          ψ        (        t        )                d        t              {\displaystyle m_{k}=\int t^{k}\psi (t)\,dt}  

m 0 = m 1 = m 2 = . . . = m p 1 = 0 {\displaystyle m_{0}=m_{1}=m_{2}=...=m_{p-1}=0}

则我们说 ψ ( t ) {\displaystyle \psi (t)} p {\displaystyle p} 个消失动量。

我们可以看到 m k = t k ψ ( t ) d t {\displaystyle m_{k}=\int t^{k}\psi (t)\,dt} 不太好计算,尤其是 k {\displaystyle k} 很大的时候。

此时,可以善用傅立叶转换来进行计算。

首先,观察傅立叶转换的公式:

                    G        (        f        )        =                g        (        t        )                  e                                  j            2            π            f            t                                  d        t              {\displaystyle G(f)=\int g(t)e^{-j2\pi ft}\,dt}  

当令 f = 0 {\displaystyle f=0} 时,可以看到以上公式变成:

                    G        (        0        )        =                g        (        t        )                d        t              {\displaystyle G(0)=\int g(t)\,dt}  

正是第0个动量 m 0 {\displaystyle m_{0}}

因此,若要计算 g ( t ) {\displaystyle g(t)} 的第0个动量,可以先计算 g ( t ) {\displaystyle g(t)} 的傅立叶转换,再取直流项(也就是 f = 0 {\displaystyle f=0} )。

我们可以同样利用傅立叶转换来计算第 k {\displaystyle k} 个动量。

首先,傅立叶转换有一个性质: 在频域微分 k {\displaystyle k} 次,就相当于时域乘上 t k {\displaystyle t^{k}}  :

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        f        )        =                          t                      k                          g        (        t        )                  e                                  j            2            π            f            t                                  d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(f)=\int t^{k}g(t)e^{-j2\pi ft}\,dt}  

当令 f = 0 {\displaystyle f=0} 时,可以看到以上公式变成:

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        0        )        =                          t                      k                          g        (        t        )                d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(0)=\int t^{k}g(t)\,dt}  

正是第 k {\displaystyle k} 个动量 m k {\displaystyle m_{k}}

因此,若要计算 g ( t ) {\displaystyle g(t)} 的第k个动量,可以先计算 g ( t ) {\displaystyle g(t)} 的傅立叶转换的k次微分,再取直流项(也就是 f = 0 {\displaystyle f=0} )。

哈尔小波转换是最简单的一种小波转换,使用哈尔基底(Haar Basis)来做母小波。

而墨西哥帽函数(Mexican hat function)也常被用来当母小波。

哈尔基底的数学表示式如下:

                    ψ        (        t        )        =                              {                                                            1                                                                    0                                    t                  <                  1                                      /                                    2                  ,                                                                                                1                                                  1                                      /                                    2                                    t                  <                  1                  ,                                                                              0                                                                                            otherwise.                                                                                                                            {\displaystyle \psi (t)={\begin{cases}1\quad &0\leq t<1/2,\\-1&1/2\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}  

ψ ( t ) {\displaystyle \psi (t)} 是一个奇函数,所以

                              m                      0                          =                ψ        (        t        )                d        t        =        0              {\displaystyle m_{0}=\int \psi (t)\,dt=0}  

t ψ ( t ) {\displaystyle t\psi (t)} 是偶函数,所以

                              m                      1                          =                t        ψ        (        t        )                d        t                0              {\displaystyle m_{1}=\int t\psi (t)\,dt\neq 0}  

因此,哈尔基底的消失动量为1。

墨西哥帽函数的数学表示式:

                    ψ        (        t        )        =                                            2                              5                                  /                                4                                                    3                                      (        1                2        π                  t                      2                          )                  e                                  π                          t                              2                                                          {\displaystyle \psi (t)={\frac {2^{5/4}}{\sqrt {3}}}(1-2\pi t^{2})e^{-\pi t^{2}}}  

仔细观察, ψ ( t ) {\displaystyle \psi (t)} 其实是高斯函数的二次微分:

                    ψ        (        t        )        =        C                                            d                              2                                                    d                              t                                  2                                                                              e                                  π                          t                              2                                                    ,        C        =              {\displaystyle \psi (t)=C{\frac {d^{2}}{dt^{2}}}e^{-\pi t^{2}},C=}   常數。 

而高斯函数做傅立叶转换仍是高斯函数:

                    ψ        (        t        )        =        C                                            d                              2                                                    d                              t                                  2                                                                              e                                  π                          t                              2                                                                    C        4                  π                      2                                    f                      2                                    e                                  π                          f                              2                                                          {\displaystyle \psi (t)=C{\frac {d^{2}}{dt^{2}}}e^{-\pi t^{2}}\to -C4\pi ^{2}f^{2}e^{-\pi f^{2}}}  

利用

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        0        )        =                          t                      k                          g        (        t        )                d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(0)=\int t^{k}g(t)\,dt}  

可以算出

                              m                      0                          =                  m                      1                          =        0        ,                  m                      2                                  0              {\displaystyle m_{0}=m_{1}=0,m_{2}\neq 0}  

所以墨西哥帽函数的消失动量为2。

墨西哥帽函数是高斯函数的二次微分,所以消失动量为2。

                    ψ        (        t        )        =                                            d                              p                                                    d                              t                                  p                                                                              e                                  π                          t                              2                                                          {\displaystyle \psi (t)={\frac {d^{p}}{dt^{p}}}e^{-\pi t^{2}}}  

其傅立叶转换为

                    (        j        2        π        f                  )                      p                                    e                                  π                          f                              2                                                          {\displaystyle (j2\pi f)^{p}e^{-\pi f^{2}}}  

利用

                                          1                          (                            j              2              π                              )                                  k                                                                              G                      (            k            )                          (        0        )        =                          t                      k                          g        (        t        )                d        t              {\displaystyle {\frac {1}{(-j2\pi )^{k}}}G^{(k)}(0)=\int t^{k}g(t)\,dt}  

可以算出

                              m                      0                          =                  m                      1                          =                  m                      p                        1                          ,                  m                      p                                  0              {\displaystyle m_{0}=m_{1}=m_{p-1},m_{p}\neq 0}  

所以高斯函数p次微分的消失动量为p。

多贝西小波(Daubechies wavelet)、Symlet 都是一些常用的离散小波,而且都是由连续小波的离散系数推导而来。

                    2        n              {\displaystyle 2n}   點的多貝西小波,消失動量                     =        n              {\displaystyle =n}  

Symlet

                    2        n              {\displaystyle 2n}   點的Symlet,消失動量                     =        n              {\displaystyle =n}  

Symlet和多贝西小波非常类似,但是比多贝西小波还要对称。

消失动量是用以判断一个函数如何递减的指标。举例来说,对于函数

                    f        (        t        )        =                                            sin                            (              t              )                                      t                              2                                                          {\displaystyle f(t)={\frac {\sin(t)}{t^{2}}}}  

当输入值 t {\displaystyle t} 逐渐往无限大增加时,此函数会以 1 t 2 {\displaystyle {\frac {1}{t^{2}}}} 的速率递减。我们可用利用定义中的动量积分式 t k f ( t ) d t {\displaystyle \int _{-\infty }^{\infty }t^{k}f(t)\,dt} 来评估此函数的递减速率。

回到此范例中的函数,当 k = 0 {\displaystyle k=0} 时,由于分子 sin ( t ) {\displaystyle \sin(t)} 会在 {\displaystyle } 之间震荡,使得整个函数在 {\displaystyle } 震荡。

此性质使得 k = 0 {\displaystyle k=0} 时,

                                                                                                                                    t                      k                          (                                            sin                            (              t              )                                      t                              2                                                    )                d        t                0              {\displaystyle \int _{-\infty }^{\infty }t^{k}({\frac {\sin(t)}{t^{2}}})\,dt\to 0}   

函数积分式必定会收敛于0,代表第0个动量 m 0 = 0 {\displaystyle m_{0}=0}

k = 1 {\displaystyle k=1} 时,

                                                                                                                                    t                      k                          (                                            sin                            (              t              )                        t                          )                d        t        =        π              {\displaystyle \int _{-\infty }^{\infty }t^{k}({\frac {\sin(t)}{t}})\,dt=\pi }  

因此第1个动量 m 1 = π 0 {\displaystyle m_{1}=\pi \neq 0}

对于 k > 1 {\displaystyle k>1} 的情况,动量积分式均会随着 t {\displaystyle t\to \infty } 而发散。

由以上的范例,我们可借由能够让动量积分式收敛为0的最大 k {\displaystyle k} 值来判断函数的递减速率,而此最大 k {\displaystyle k} 值便是函数的消失动量。

在连续小波转换中,设计母小波的其中一个条件是有值区间比须是有限的,而母小波在有值区间内如何递减的特性,则可由消失动量来描述。

依照定义,小波母函数 ψ ( t ) {\displaystyle \psi (t)} p {\displaystyle p}

相关

  • 沈其韩沈其韩(1922年4月27日-),中国地质学家。1922年出生于江苏淮阴。籍贯江苏海门。1946年毕业于重庆大学地质系。1991年当选为中国科学院学部委员(院士)。国土资源部中国地质科学院
  • 堂表亲堂表亲(英语:cousin)是一种亲属关系,堂表亲之间有着隔两代或以上的共同祖先,这把堂表亲从祖先、后代、兄弟姐妹,以及其他亲属关系作出区分。汉语中,堂亲指父亲的兄弟的孩子,一般为同
  • 圣塔克鲁斯圣塔克鲁斯是哥伦比亚的城镇,位于该国西南部,由纳里尼奥省负责管辖,距离首府帕斯托108公里,始建于1517年,面积560平方公里,海拔高度2,489米,2005年人口16,869。坐标:1°13′29″N 77
  • 阿普特1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。阿普特(法语:Apt,发音:)是法国普罗旺斯-阿尔卑斯-蓝色海岸大区 沃克吕兹省的一个市镇,位于该省
  • span class=nowrapPm(NOsub3/sub)sub3/sub/span硝酸钷是一种无机化合物,化学式为Pm(NO3)3,具有放射性,可溶于水。硝酸钷可由氧化钷和硝酸反应得到:硝酸钷可以经皮肤吸收,富集于肝脏和骨骼中。
  • 体温过低失温症(Hypothermia,源自希腊文“ὑποθερμία”),又称低温症、低体温症。描述当人体核心温度低于35.0 °C(95.0 °F)时的现象。失温症的症状取决于温度,轻度失温可能造成发
  • 刘宽平刘宽平(George K. Liu,1935年6月20日-),2007年11月—2008年8月任中华民国外交部派驻瑞士代表。2008年6月16日瑞士联邦检察署为调查前总统陈水扁之子陈致中夫妇涉嫌海外洗钱案,第二
  • 伊玛目·朋佐尔伊玛目·朋佐尔(印尼语:Tuanku Imam Bonjol,1772年-1864年11月6日)一译彭佐尔伊曼。是19世纪一位印度尼西亚抗荷斗争领袖。原名“穆罕默德·沙哈布”(印尼语:Muhammad Shahab),因在苏
  • 埃及蓝睡莲'Nymphaea caerulea)已知主要名称:蓝睡莲 blue lotus(或埃及蓝色莲花 Blue Egyptian Lotus)。 如同其他的睡莲属种,植物含有精神性生物碱:荷叶碱、阿朴啡 aporphine(不要与阿朴吗啡
  • 伦德斯堡施塔特湖坐标:54°18′14.25998″N 9°39′33.36359″E / 54.3039611056°N 9.6592676639°E / 54.3039611056; 9.6592676639伦德斯堡施塔特湖(德语:Rendsburger Stadtsee),是德国的湖泊,