直线

✍ dations ◷ 2025-06-28 14:14:47 #直线
直线,是一个点在平面或空间沿着一定方向和其相反方向运动的轨迹,是不弯曲的线。直线是几何学的基本概念,在不同的几何学体系中有着不同的描述。在这里主要描述欧几里得空间中的直线。其他曲率非零状况下的直线,请参考非欧几里得几何。欧几里得几何研究曲率为零的空间下状况,它并未对点、直线、平面、空间给出定义,而是通过公理来描述点线面的关系。 欧几里得几何中的直线可以看作是一个点的集合,这个集合中的任意一点都在这个集合中的其他任意两点所确定的直线上。“过两点有且只有一条直线”是欧几里得几何体系中的一条公理,“有且只有”意即“确定”,即两点确定一直线。在几何学中,直线没有粗细,没有端点,没有方向性,具有无限的长度,具有固定的位置。在解析几何中,我们常用线性方程描述一条直线。平行于x-或y-轴最简单的直线方程是平行于x-轴或y-轴的直线:当中 a {displaystyle a} 和 b {displaystyle b} 分别是x-和y-截距。一般式对于所有的直线,都可以形式来表示。这表示示形式并不是唯一的,但习惯上常限制 A ≥ 0 {displaystyle Ageq 0} 及 gcd ( A , B , C ) = 1 {displaystyle gcd(A,B,C)=1} 。在此限制下,同一条直线只有一种表达形式。在这形式下,直线的斜率是 − A B {displaystyle -{frac {A}{B}}} ,x-截距是 − C A {displaystyle -{frac {C}{A}}} ,y-截距是 − C B {displaystyle -{frac {C}{B}}} 。斜截式在直线不平行于y-轴时,若斜率是 m {displaystyle m} ,y-截距是 b {displaystyle b} ,则有方程在这形式下,直线的表达形式是唯一的。二点式若直线穿过两点 ( x 1 , y 1 ) {displaystyle (x_{1},y_{1})} 和 ( x 2 , y 2 ) {displaystyle (x_{2},y_{2})} ,则有方程等价地,可以用行列式表示。点斜式若直线穿过一点 ( x 0 , y 0 ) {displaystyle (x_{0},y_{0})} ,而且斜率是 m {displaystyle m} ,则有方程截距式若直线的x-和y-截距分别是 a {displaystyle a} 和 b {displaystyle b} ,则方程为法线式过原点向直线作一垂直线段,若该线长度为 p {displaystyle p} ,且与正x-轴的倾斜角为 α {displaystyle alpha } ,则有方程向量式若直线穿过一点 a = [ x 0 y 0 ] {displaystyle mathbf {a} ={begin{bmatrix}x_{0}\y_{0}\end{bmatrix}}} ,且有方向向量 u = [ u x u y ] {displaystyle mathbf {u} ={begin{bmatrix}u_{x}\u_{y}\end{bmatrix}}} ,则有向量方程当中 r = [ x y ] {displaystyle mathbf {r} ={begin{bmatrix}x\y\end{bmatrix}}} ,而 λ {displaystyle lambda } 是一任意实数。须要注意的是,这直线的表达形式并不是唯一的。参数式从向量式出发,可以参数 λ {displaystyle lambda } 表示方程其中 λ {displaystyle lambda } 是一任意实数。在三维坐标上,由于一条等式只代表一个平面,一条直线须由最少两条等式定义。平行于x-、y-或z-轴平行于x-、y-或z-轴的直线有方程的形式。一般式对于任何直线,一般式都能以两个非平行平面定义:其中 A 1 : B 1 : C 1 ≠ A 2 : B 2 : C 2 {displaystyle A_{1}:B_{1}:C_{1}neq A_{2}:B_{2}:C_{2}} 。由于从一条直线可引申出无限对平面,这表示方式并不是唯一的。因此又能考虑以三个共线平面定义:或合并记作其中系数须乎合关系 A F + B E + C D = 0 {displaystyle AF+BE+CD=0} ,以保证三个平面相交于同一直线。事实上,这三条等式分别对应着直线在xy-、yz-和xz-平面的投影。在限制 A ≥ 0 {displaystyle Ageq 0} 及 gcd ( A , B , C , D , E , F ) = 1 {displaystyle gcd(A,B,C,D,E,F)=1} 下,同一条直线只有一种表达形式。(注:对于平行于轴平面的直线,例如 2 y − 3 z + 1 = x − 1 = 0 {displaystyle 2y-3z+1=x-1=0} ,会有以下表示方式:对于定义一条直线,这步骤是非必要的。但在本页往后的部分,这表示方式能简化一些公式。)斜截式类似于二维的情形,在直线不平行于yz-轴平面时,可以写成的形式。在这形式下,直线的表达形式是唯一的。(注:对于直线平行于yz-平面时,以上方式并不适用。但直线仍可表示成二点式若直线穿过两点 ( x 1 , y 1 , z 1 ) {displaystyle (x_{1},y_{1},z_{1})} 和 ( x 2 , y 2 , z 2 ) {displaystyle (x_{2},y_{2},z_{2})} ,则有方程等价地,可以用行列式表示。向量式若直线穿过一点 a = [ x 0 y 0 z 0 ] {displaystyle mathbf {a} ={begin{bmatrix}x_{0}\y_{0}\z_{0}\end{bmatrix}}} ,且有方向向量 u = [ u x u y u z ] {displaystyle mathbf {u} ={begin{bmatrix}u_{x}\u_{y}\u_{z}\end{bmatrix}}} ,则有向量方程当中 r = [ x y z ] {displaystyle mathbf {r} ={begin{bmatrix}x\y\z\end{bmatrix}}} ,而 λ {displaystyle lambda } 是一任意实数。须要注意的是,这直线的表达形式并不是唯一的。参数式从向量式出发,可以参数 λ {displaystyle lambda } 表示方程其中 λ {displaystyle lambda } 是一任意实数。一般情况下,点与直线的距离,是指点到直线的最短距离,即垂直距离。在二维直角坐标中,直线 A x + B y + C = 0 {displaystyle Ax+By+C=0} 与点 ( p , q ) {displaystyle (p,q)} 的最短距离为给出向量式 r = a + λ u {displaystyle mathbf {r} =mathbf {a} +lambda mathbf {u} } 和 点 p = [ p q ] {displaystyle mathbf {p} ={begin{bmatrix}p\q\end{bmatrix}}} ,则有距离在三维直角坐标中,直线 A x − B y + D = 0 C y − A z + E = 0 B z − C x + F = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D;&&=;&&0&\Cy&&;-;&&Az&&;+;&&E;&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F;&&=;&&0end{alignedat}}} 与点 ( p , q , r ) {displaystyle (p,q,r)} 的最短距离为给出向量式 r = a + λ u {displaystyle mathbf {r} =mathbf {a} +lambda mathbf {u} } 和点 p = [ p q r ] {displaystyle mathbf {p} ={begin{bmatrix}p\q\r\end{bmatrix}}} ,则有距离不考虑重合的情形,在二维平面中,两条相交直线可以相交或平行。给定两条直线 A 1 x + B 1 y + C 1 = 0 {displaystyle A_{1}x+B_{1}y+C_{1}=0} 和 A 2 x + B 2 y + C 2 = 0 {displaystyle A_{2}x+B_{2}y+C_{2}=0} ,二者相交的条件是或等价地,当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。这时两线的相交点可从克莱姆法则求得在三维空间中,不考虑重合的情形,两条直线可以相交、平行或歪斜(异面)。给定两条直线 A 1 x − B 1 y + D 1 = 0 C 1 y − A 1 z + E 1 = 0 B 1 z − C 1 x + F 1 = 0 {displaystyle {begin{alignedat}{7}A_{1}x&&;-;&&B_{1}y&&;+;&&D_{1};&&=;&&0&\C_{1}y&&;-;&&A_{1}z&&;+;&&E_{1};&&=;&&0&\B_{1}z&&;-;&&C_{1}x&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A 2 x − B 2 y + D 2 = 0 C 2 y − A 2 z + E 2 = 0 B 2 z − C 2 x + F 2 = 0 {displaystyle {begin{alignedat}{7}A_{2}x&&;-;&&B_{2}y&&;+;&&D_{2};&&=;&&0&\C_{2}y&&;-;&&A_{2}z&&;+;&&E_{2};&&=;&&0&\B_{2}z&&;-;&&C_{2}x&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,二者相交的条件是这时两线的相交点可从克莱姆法则求得若两线相交,则会形成夹角。两线之间的夹角,通常指不大于90°的一只。在二维平面上,给定直线 y = m x + b {displaystyle y=mx+b} ,该线与x-轴的夹角为给定两条直线 y = m 1 x + b 1 {displaystyle y=m_{1}x+b_{1}} 和 y = m 2 x + b 2 {displaystyle y=m_{2}x+b_{2}} ,二者互相垂直当且仅当而其他情况,两线相交所形成的夹角 θ {displaystyle theta } ( 0 ∘ ≤ θ < 90 ∘ {displaystyle 0^{circ }leq theta <90^{circ }} ),则由给出。给定相交直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有在三维空间中,给定两条相交直线 y = m 1 x + b 1 z = n 1 x + c 1 {displaystyle {begin{alignedat}{5}y&&;=;&&m_{1}x&&;+;&&b_{1}\z&&;=;&&n_{1}x&&;+;&&c_{1}end{alignedat}}} 和 y = m 2 x + b 2 z = n 2 x + c 2 {displaystyle {begin{alignedat}{5}y&&;=;&&m_{2}x&&;+;&&b_{2}\z&&;=;&&n_{2}x&&;+;&&c_{2}end{alignedat}}} ,二者互相垂直当且仅当而其他情况,两线相交所形成的夹角 θ {displaystyle theta } ( 0 ∘ ≤ θ < 90 ∘ {displaystyle 0^{circ }leq theta <90^{circ }} ),则由给出,当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。若取 n 1 = n 2 = 0 {displaystyle n_{1}=n_{2}=0} , 则公式退化成二维的形式。给定相交直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有一般情况下,两条直线的距离,是指最短距离。二维情况下,两条相交直线的距离必然为 0 {displaystyle 0} 。若有两条平行直线 A x + B y + C 1 = 0 {displaystyle Ax+By+C_{1}=0} 及 A x + B y + C 2 = 0 {displaystyle Ax+By+C_{2}=0} ,则有距离给定平行向量式 r = a 1 + λ u {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u} } 和 r = a 2 + μ u {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u} } ,则有三维情况下,两条相交直线的距离同样必然为 0 {displaystyle 0} 。若有两条平行直线 A x − B y + D 1 = 0 C y − A z + E 1 = 0 B z − C x + F 1 = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D_{1};&&=;&&0&\Cy&&;-;&&Az&&;+;&&E_{1};&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A x − B y + D 2 = 0 C y − A z + E 2 = 0 B z − C x + F 2 = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D_{2};&&=;&&0&\Cy&&;-;&&Az&&;+;&&E_{2};&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,则有距离给定平行直线向量式 r = a 1 + λ u {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u} } 和 r = a 2 + μ u {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u} } ,则有两条歪斜直线(即既非相交,亦非平行)有方程 A 1 x − B 1 y + D 1 = 0 C 1 y − A 1 z + E 1 = 0 B 1 z − C 1 x + F 1 = 0 {displaystyle {begin{alignedat}{7}A_{1}x&&;-;&&B_{1}y&&;+;&&D_{1};&&=;&&0&\C_{1}y&&;-;&&A_{1}z&&;+;&&E_{1};&&=;&&0&\B_{1}z&&;-;&&C_{1}x&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A 2 x − B 2 y + D 2 = 0 C 2 y − A 2 z + E 2 = 0 B 2 z − C 2 x + F 2 = 0 {displaystyle {begin{alignedat}{7}A_{2}x&&;-;&&B_{2}y&&;+;&&D_{2};&&=;&&0&\C_{2}y&&;-;&&A_{2}z&&;+;&&E_{2};&&=;&&0&\B_{2}z&&;-;&&C_{2}x&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,则有距离当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。给定歪斜直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有距离

相关

  • 国务卿美国国务卿(United States Secretary of State),直译为美国国务秘书,是美国国务院的首长,同时为美国内阁成员,主管美国外交事务,代表美国总统执行对外政策,相当于美国外交部长,其地位
  • 620110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 逆偶例谬误逆偶例谬误(converse accident)或逆偶然谬误、逆意外谬误是一种“例外凌驾通则”的非形式谬误,是基于某个例外的存在,而否定一般性的通则。解说:救护车是例外,不代表应该设下速限
  • 卢 强卢强(1936年5月19日-),安徽无为人,中国自动控制和电力系统动态学专家,清华大学教授。1964年清华大学电机系研究生毕业。1991年当选为中国科学院院士(学部委员)。
  • 未予评估 (NE)未予评估(Not evaluated,或缩写为NE)是一种适用于世界自然保护联盟红色名录的保护现状。该物种/亚种尚未被国际自然保护联盟研究或评估过,或暂被视为不需急着被关注而先将资源投
  • 核蛋白体核糖体(ribosome),旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器,由一大一小两个亚基结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)
  • ω−9单元不饱和Ω-9脂肪酸(英语:ω−9 fatty acids或n−9 fatty acids)是一种非必要的脂肪酸,可以在人体内自行合成。可减少患上管道硬化、及减低心血管道及脑管道梗塞的机会。橄榄油、芝麻油
  • tachycardia心跳过速(tachycardia、tachyarrhythmia),也称心动过速、心跳过快。是指心跳速度超出了正常范围,达到每分钟一百次以上的现象。剧烈的体育运动、紧张、焦虑或服用某些药物等可能
  • 俄罗斯联邦中央银行俄罗斯银行(俄语:Банк России)是俄罗斯的中央银行,亦称俄罗斯央行(俄语:ЦБ России)或俄联邦央行(俄语:ЦБ РФ),成立于1990年7月13日。它主管俄罗斯境内货币发行、
  • 申师任堂申师任堂(朝鲜语:신사임당,1504年10月29日-1551年5月17日),朝鲜国中期的女性书画家、作家、儒学者和诗人。儒学者李栗谷的母亲。字仁善、号师任堂、思任堂、师妊堂、妊师斋、任堂