直线

✍ dations ◷ 2025-09-12 11:31:53 #直线
直线,是一个点在平面或空间沿着一定方向和其相反方向运动的轨迹,是不弯曲的线。直线是几何学的基本概念,在不同的几何学体系中有着不同的描述。在这里主要描述欧几里得空间中的直线。其他曲率非零状况下的直线,请参考非欧几里得几何。欧几里得几何研究曲率为零的空间下状况,它并未对点、直线、平面、空间给出定义,而是通过公理来描述点线面的关系。 欧几里得几何中的直线可以看作是一个点的集合,这个集合中的任意一点都在这个集合中的其他任意两点所确定的直线上。“过两点有且只有一条直线”是欧几里得几何体系中的一条公理,“有且只有”意即“确定”,即两点确定一直线。在几何学中,直线没有粗细,没有端点,没有方向性,具有无限的长度,具有固定的位置。在解析几何中,我们常用线性方程描述一条直线。平行于x-或y-轴最简单的直线方程是平行于x-轴或y-轴的直线:当中 a {displaystyle a} 和 b {displaystyle b} 分别是x-和y-截距。一般式对于所有的直线,都可以形式来表示。这表示示形式并不是唯一的,但习惯上常限制 A ≥ 0 {displaystyle Ageq 0} 及 gcd ( A , B , C ) = 1 {displaystyle gcd(A,B,C)=1} 。在此限制下,同一条直线只有一种表达形式。在这形式下,直线的斜率是 − A B {displaystyle -{frac {A}{B}}} ,x-截距是 − C A {displaystyle -{frac {C}{A}}} ,y-截距是 − C B {displaystyle -{frac {C}{B}}} 。斜截式在直线不平行于y-轴时,若斜率是 m {displaystyle m} ,y-截距是 b {displaystyle b} ,则有方程在这形式下,直线的表达形式是唯一的。二点式若直线穿过两点 ( x 1 , y 1 ) {displaystyle (x_{1},y_{1})} 和 ( x 2 , y 2 ) {displaystyle (x_{2},y_{2})} ,则有方程等价地,可以用行列式表示。点斜式若直线穿过一点 ( x 0 , y 0 ) {displaystyle (x_{0},y_{0})} ,而且斜率是 m {displaystyle m} ,则有方程截距式若直线的x-和y-截距分别是 a {displaystyle a} 和 b {displaystyle b} ,则方程为法线式过原点向直线作一垂直线段,若该线长度为 p {displaystyle p} ,且与正x-轴的倾斜角为 α {displaystyle alpha } ,则有方程向量式若直线穿过一点 a = [ x 0 y 0 ] {displaystyle mathbf {a} ={begin{bmatrix}x_{0}\y_{0}\end{bmatrix}}} ,且有方向向量 u = [ u x u y ] {displaystyle mathbf {u} ={begin{bmatrix}u_{x}\u_{y}\end{bmatrix}}} ,则有向量方程当中 r = [ x y ] {displaystyle mathbf {r} ={begin{bmatrix}x\y\end{bmatrix}}} ,而 λ {displaystyle lambda } 是一任意实数。须要注意的是,这直线的表达形式并不是唯一的。参数式从向量式出发,可以参数 λ {displaystyle lambda } 表示方程其中 λ {displaystyle lambda } 是一任意实数。在三维坐标上,由于一条等式只代表一个平面,一条直线须由最少两条等式定义。平行于x-、y-或z-轴平行于x-、y-或z-轴的直线有方程的形式。一般式对于任何直线,一般式都能以两个非平行平面定义:其中 A 1 : B 1 : C 1 ≠ A 2 : B 2 : C 2 {displaystyle A_{1}:B_{1}:C_{1}neq A_{2}:B_{2}:C_{2}} 。由于从一条直线可引申出无限对平面,这表示方式并不是唯一的。因此又能考虑以三个共线平面定义:或合并记作其中系数须乎合关系 A F + B E + C D = 0 {displaystyle AF+BE+CD=0} ,以保证三个平面相交于同一直线。事实上,这三条等式分别对应着直线在xy-、yz-和xz-平面的投影。在限制 A ≥ 0 {displaystyle Ageq 0} 及 gcd ( A , B , C , D , E , F ) = 1 {displaystyle gcd(A,B,C,D,E,F)=1} 下,同一条直线只有一种表达形式。(注:对于平行于轴平面的直线,例如 2 y − 3 z + 1 = x − 1 = 0 {displaystyle 2y-3z+1=x-1=0} ,会有以下表示方式:对于定义一条直线,这步骤是非必要的。但在本页往后的部分,这表示方式能简化一些公式。)斜截式类似于二维的情形,在直线不平行于yz-轴平面时,可以写成的形式。在这形式下,直线的表达形式是唯一的。(注:对于直线平行于yz-平面时,以上方式并不适用。但直线仍可表示成二点式若直线穿过两点 ( x 1 , y 1 , z 1 ) {displaystyle (x_{1},y_{1},z_{1})} 和 ( x 2 , y 2 , z 2 ) {displaystyle (x_{2},y_{2},z_{2})} ,则有方程等价地,可以用行列式表示。向量式若直线穿过一点 a = [ x 0 y 0 z 0 ] {displaystyle mathbf {a} ={begin{bmatrix}x_{0}\y_{0}\z_{0}\end{bmatrix}}} ,且有方向向量 u = [ u x u y u z ] {displaystyle mathbf {u} ={begin{bmatrix}u_{x}\u_{y}\u_{z}\end{bmatrix}}} ,则有向量方程当中 r = [ x y z ] {displaystyle mathbf {r} ={begin{bmatrix}x\y\z\end{bmatrix}}} ,而 λ {displaystyle lambda } 是一任意实数。须要注意的是,这直线的表达形式并不是唯一的。参数式从向量式出发,可以参数 λ {displaystyle lambda } 表示方程其中 λ {displaystyle lambda } 是一任意实数。一般情况下,点与直线的距离,是指点到直线的最短距离,即垂直距离。在二维直角坐标中,直线 A x + B y + C = 0 {displaystyle Ax+By+C=0} 与点 ( p , q ) {displaystyle (p,q)} 的最短距离为给出向量式 r = a + λ u {displaystyle mathbf {r} =mathbf {a} +lambda mathbf {u} } 和 点 p = [ p q ] {displaystyle mathbf {p} ={begin{bmatrix}p\q\end{bmatrix}}} ,则有距离在三维直角坐标中,直线 A x − B y + D = 0 C y − A z + E = 0 B z − C x + F = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D;&&=;&&0&\Cy&&;-;&&Az&&;+;&&E;&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F;&&=;&&0end{alignedat}}} 与点 ( p , q , r ) {displaystyle (p,q,r)} 的最短距离为给出向量式 r = a + λ u {displaystyle mathbf {r} =mathbf {a} +lambda mathbf {u} } 和点 p = [ p q r ] {displaystyle mathbf {p} ={begin{bmatrix}p\q\r\end{bmatrix}}} ,则有距离不考虑重合的情形,在二维平面中,两条相交直线可以相交或平行。给定两条直线 A 1 x + B 1 y + C 1 = 0 {displaystyle A_{1}x+B_{1}y+C_{1}=0} 和 A 2 x + B 2 y + C 2 = 0 {displaystyle A_{2}x+B_{2}y+C_{2}=0} ,二者相交的条件是或等价地,当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。这时两线的相交点可从克莱姆法则求得在三维空间中,不考虑重合的情形,两条直线可以相交、平行或歪斜(异面)。给定两条直线 A 1 x − B 1 y + D 1 = 0 C 1 y − A 1 z + E 1 = 0 B 1 z − C 1 x + F 1 = 0 {displaystyle {begin{alignedat}{7}A_{1}x&&;-;&&B_{1}y&&;+;&&D_{1};&&=;&&0&\C_{1}y&&;-;&&A_{1}z&&;+;&&E_{1};&&=;&&0&\B_{1}z&&;-;&&C_{1}x&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A 2 x − B 2 y + D 2 = 0 C 2 y − A 2 z + E 2 = 0 B 2 z − C 2 x + F 2 = 0 {displaystyle {begin{alignedat}{7}A_{2}x&&;-;&&B_{2}y&&;+;&&D_{2};&&=;&&0&\C_{2}y&&;-;&&A_{2}z&&;+;&&E_{2};&&=;&&0&\B_{2}z&&;-;&&C_{2}x&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,二者相交的条件是这时两线的相交点可从克莱姆法则求得若两线相交,则会形成夹角。两线之间的夹角,通常指不大于90°的一只。在二维平面上,给定直线 y = m x + b {displaystyle y=mx+b} ,该线与x-轴的夹角为给定两条直线 y = m 1 x + b 1 {displaystyle y=m_{1}x+b_{1}} 和 y = m 2 x + b 2 {displaystyle y=m_{2}x+b_{2}} ,二者互相垂直当且仅当而其他情况,两线相交所形成的夹角 θ {displaystyle theta } ( 0 ∘ ≤ θ < 90 ∘ {displaystyle 0^{circ }leq theta <90^{circ }} ),则由给出。给定相交直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有在三维空间中,给定两条相交直线 y = m 1 x + b 1 z = n 1 x + c 1 {displaystyle {begin{alignedat}{5}y&&;=;&&m_{1}x&&;+;&&b_{1}\z&&;=;&&n_{1}x&&;+;&&c_{1}end{alignedat}}} 和 y = m 2 x + b 2 z = n 2 x + c 2 {displaystyle {begin{alignedat}{5}y&&;=;&&m_{2}x&&;+;&&b_{2}\z&&;=;&&n_{2}x&&;+;&&c_{2}end{alignedat}}} ,二者互相垂直当且仅当而其他情况,两线相交所形成的夹角 θ {displaystyle theta } ( 0 ∘ ≤ θ < 90 ∘ {displaystyle 0^{circ }leq theta <90^{circ }} ),则由给出,当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。若取 n 1 = n 2 = 0 {displaystyle n_{1}=n_{2}=0} , 则公式退化成二维的形式。给定相交直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有一般情况下,两条直线的距离,是指最短距离。二维情况下,两条相交直线的距离必然为 0 {displaystyle 0} 。若有两条平行直线 A x + B y + C 1 = 0 {displaystyle Ax+By+C_{1}=0} 及 A x + B y + C 2 = 0 {displaystyle Ax+By+C_{2}=0} ,则有距离给定平行向量式 r = a 1 + λ u {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u} } 和 r = a 2 + μ u {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u} } ,则有三维情况下,两条相交直线的距离同样必然为 0 {displaystyle 0} 。若有两条平行直线 A x − B y + D 1 = 0 C y − A z + E 1 = 0 B z − C x + F 1 = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D_{1};&&=;&&0&\Cy&&;-;&&Az&&;+;&&E_{1};&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A x − B y + D 2 = 0 C y − A z + E 2 = 0 B z − C x + F 2 = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D_{2};&&=;&&0&\Cy&&;-;&&Az&&;+;&&E_{2};&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,则有距离给定平行直线向量式 r = a 1 + λ u {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u} } 和 r = a 2 + μ u {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u} } ,则有两条歪斜直线(即既非相交,亦非平行)有方程 A 1 x − B 1 y + D 1 = 0 C 1 y − A 1 z + E 1 = 0 B 1 z − C 1 x + F 1 = 0 {displaystyle {begin{alignedat}{7}A_{1}x&&;-;&&B_{1}y&&;+;&&D_{1};&&=;&&0&\C_{1}y&&;-;&&A_{1}z&&;+;&&E_{1};&&=;&&0&\B_{1}z&&;-;&&C_{1}x&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A 2 x − B 2 y + D 2 = 0 C 2 y − A 2 z + E 2 = 0 B 2 z − C 2 x + F 2 = 0 {displaystyle {begin{alignedat}{7}A_{2}x&&;-;&&B_{2}y&&;+;&&D_{2};&&=;&&0&\C_{2}y&&;-;&&A_{2}z&&;+;&&E_{2};&&=;&&0&\B_{2}z&&;-;&&C_{2}x&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,则有距离当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。给定歪斜直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有距离

相关

  • 感受器感受器(英语:Sensory receptor)也译作感觉接受器,是机体感受刺激的装置。听觉系统/听觉
  • 朝圣朝觐(阿拉伯语: حج‎, Hajj),指的是伊斯兰教徒到麦加的朝觐,这是每年全世界穆斯林最大规模的聚会,也是伊斯兰教的五功之一。依据朝觐规范,每一个身体健康经济良好的穆斯林,一生中
  • 冒烟点冒烟点(德语:Rauchpunkt;英语:smoke point),也称为发烟点,是指加热的油开始产生烟的最低温度。在此温度之下,一些挥发物质如水、游离脂肪酸、氧化降解之短链产物会从油品逸散出来,产
  • 投手投手(英语:Pitcher,通常简写成P)是棒球或垒球比赛中,防守方负责投球供进攻方打击手打击的球员,通常被视为主宰比赛胜负的灵魂人物。只要不违反规则,投手可采用任何一种姿势来作投球
  • 施肥堆肥是被分解和回收的有机物质作为肥料和土壤调理剂(英语:Soil conditioner)。堆肥是有机农业的关键成分。在最简单的层面上,堆肥过程需要将一批被称为绿色废物(英语:Green waste)(
  • 泛性别非二元性别(英语:Non-binary gender)、性别酷儿(英语:genderqueer)和X性别(日语:Xジェンダー)是指一系列不完全是男性或女性的性别认同,这些身份在男性或女性的分类以外。非二元性别可
  • 迷失《迷失》(英语:Lost)是一部美国电视连续剧影集,最初由美国广播公司播出,全剧从2004年9月22日开播,到2010年5月23日完结,共播出六季。内容讲述从澳大利亚悉尼飞往美国洛杉矶的海洋航
  • 印尼印度尼西亚是世界第四人口大国,2.536多亿人口散居在约6000个岛屿上。印尼也是一个多民族的国家,有100多个民族,其中爪哇族占总人口的40.6%,华裔占1.2%。全国约87.2%的居民信奉伊
  • ostracod介形纲(学名:Ostracoda),在日语或参考自日语的文献亦作贝虫纲或贝形虫纲,是甲壳亚门之下的一个纲级分类单元,其生物泛称作介形虫或种子虾。目前已辨识的介形虫有约7万个物种,当中只
  • 刑部刑部是中国古代官署名之一。其长官为刑部尚书。刑部最早出自隋朝五省六曹制,其时设有都官尚书,后来改为刑部尚书,为六部之一,长官为刑部尚书。其后由唐至元,此制历代相沿。唐玄宗