直线

✍ dations ◷ 2025-04-04 11:21:31 #直线
直线,是一个点在平面或空间沿着一定方向和其相反方向运动的轨迹,是不弯曲的线。直线是几何学的基本概念,在不同的几何学体系中有着不同的描述。在这里主要描述欧几里得空间中的直线。其他曲率非零状况下的直线,请参考非欧几里得几何。欧几里得几何研究曲率为零的空间下状况,它并未对点、直线、平面、空间给出定义,而是通过公理来描述点线面的关系。 欧几里得几何中的直线可以看作是一个点的集合,这个集合中的任意一点都在这个集合中的其他任意两点所确定的直线上。“过两点有且只有一条直线”是欧几里得几何体系中的一条公理,“有且只有”意即“确定”,即两点确定一直线。在几何学中,直线没有粗细,没有端点,没有方向性,具有无限的长度,具有固定的位置。在解析几何中,我们常用线性方程描述一条直线。平行于x-或y-轴最简单的直线方程是平行于x-轴或y-轴的直线:当中 a {displaystyle a} 和 b {displaystyle b} 分别是x-和y-截距。一般式对于所有的直线,都可以形式来表示。这表示示形式并不是唯一的,但习惯上常限制 A ≥ 0 {displaystyle Ageq 0} 及 gcd ( A , B , C ) = 1 {displaystyle gcd(A,B,C)=1} 。在此限制下,同一条直线只有一种表达形式。在这形式下,直线的斜率是 − A B {displaystyle -{frac {A}{B}}} ,x-截距是 − C A {displaystyle -{frac {C}{A}}} ,y-截距是 − C B {displaystyle -{frac {C}{B}}} 。斜截式在直线不平行于y-轴时,若斜率是 m {displaystyle m} ,y-截距是 b {displaystyle b} ,则有方程在这形式下,直线的表达形式是唯一的。二点式若直线穿过两点 ( x 1 , y 1 ) {displaystyle (x_{1},y_{1})} 和 ( x 2 , y 2 ) {displaystyle (x_{2},y_{2})} ,则有方程等价地,可以用行列式表示。点斜式若直线穿过一点 ( x 0 , y 0 ) {displaystyle (x_{0},y_{0})} ,而且斜率是 m {displaystyle m} ,则有方程截距式若直线的x-和y-截距分别是 a {displaystyle a} 和 b {displaystyle b} ,则方程为法线式过原点向直线作一垂直线段,若该线长度为 p {displaystyle p} ,且与正x-轴的倾斜角为 α {displaystyle alpha } ,则有方程向量式若直线穿过一点 a = [ x 0 y 0 ] {displaystyle mathbf {a} ={begin{bmatrix}x_{0}\y_{0}\end{bmatrix}}} ,且有方向向量 u = [ u x u y ] {displaystyle mathbf {u} ={begin{bmatrix}u_{x}\u_{y}\end{bmatrix}}} ,则有向量方程当中 r = [ x y ] {displaystyle mathbf {r} ={begin{bmatrix}x\y\end{bmatrix}}} ,而 λ {displaystyle lambda } 是一任意实数。须要注意的是,这直线的表达形式并不是唯一的。参数式从向量式出发,可以参数 λ {displaystyle lambda } 表示方程其中 λ {displaystyle lambda } 是一任意实数。在三维坐标上,由于一条等式只代表一个平面,一条直线须由最少两条等式定义。平行于x-、y-或z-轴平行于x-、y-或z-轴的直线有方程的形式。一般式对于任何直线,一般式都能以两个非平行平面定义:其中 A 1 : B 1 : C 1 ≠ A 2 : B 2 : C 2 {displaystyle A_{1}:B_{1}:C_{1}neq A_{2}:B_{2}:C_{2}} 。由于从一条直线可引申出无限对平面,这表示方式并不是唯一的。因此又能考虑以三个共线平面定义:或合并记作其中系数须乎合关系 A F + B E + C D = 0 {displaystyle AF+BE+CD=0} ,以保证三个平面相交于同一直线。事实上,这三条等式分别对应着直线在xy-、yz-和xz-平面的投影。在限制 A ≥ 0 {displaystyle Ageq 0} 及 gcd ( A , B , C , D , E , F ) = 1 {displaystyle gcd(A,B,C,D,E,F)=1} 下,同一条直线只有一种表达形式。(注:对于平行于轴平面的直线,例如 2 y − 3 z + 1 = x − 1 = 0 {displaystyle 2y-3z+1=x-1=0} ,会有以下表示方式:对于定义一条直线,这步骤是非必要的。但在本页往后的部分,这表示方式能简化一些公式。)斜截式类似于二维的情形,在直线不平行于yz-轴平面时,可以写成的形式。在这形式下,直线的表达形式是唯一的。(注:对于直线平行于yz-平面时,以上方式并不适用。但直线仍可表示成二点式若直线穿过两点 ( x 1 , y 1 , z 1 ) {displaystyle (x_{1},y_{1},z_{1})} 和 ( x 2 , y 2 , z 2 ) {displaystyle (x_{2},y_{2},z_{2})} ,则有方程等价地,可以用行列式表示。向量式若直线穿过一点 a = [ x 0 y 0 z 0 ] {displaystyle mathbf {a} ={begin{bmatrix}x_{0}\y_{0}\z_{0}\end{bmatrix}}} ,且有方向向量 u = [ u x u y u z ] {displaystyle mathbf {u} ={begin{bmatrix}u_{x}\u_{y}\u_{z}\end{bmatrix}}} ,则有向量方程当中 r = [ x y z ] {displaystyle mathbf {r} ={begin{bmatrix}x\y\z\end{bmatrix}}} ,而 λ {displaystyle lambda } 是一任意实数。须要注意的是,这直线的表达形式并不是唯一的。参数式从向量式出发,可以参数 λ {displaystyle lambda } 表示方程其中 λ {displaystyle lambda } 是一任意实数。一般情况下,点与直线的距离,是指点到直线的最短距离,即垂直距离。在二维直角坐标中,直线 A x + B y + C = 0 {displaystyle Ax+By+C=0} 与点 ( p , q ) {displaystyle (p,q)} 的最短距离为给出向量式 r = a + λ u {displaystyle mathbf {r} =mathbf {a} +lambda mathbf {u} } 和 点 p = [ p q ] {displaystyle mathbf {p} ={begin{bmatrix}p\q\end{bmatrix}}} ,则有距离在三维直角坐标中,直线 A x − B y + D = 0 C y − A z + E = 0 B z − C x + F = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D;&&=;&&0&\Cy&&;-;&&Az&&;+;&&E;&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F;&&=;&&0end{alignedat}}} 与点 ( p , q , r ) {displaystyle (p,q,r)} 的最短距离为给出向量式 r = a + λ u {displaystyle mathbf {r} =mathbf {a} +lambda mathbf {u} } 和点 p = [ p q r ] {displaystyle mathbf {p} ={begin{bmatrix}p\q\r\end{bmatrix}}} ,则有距离不考虑重合的情形,在二维平面中,两条相交直线可以相交或平行。给定两条直线 A 1 x + B 1 y + C 1 = 0 {displaystyle A_{1}x+B_{1}y+C_{1}=0} 和 A 2 x + B 2 y + C 2 = 0 {displaystyle A_{2}x+B_{2}y+C_{2}=0} ,二者相交的条件是或等价地,当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。这时两线的相交点可从克莱姆法则求得在三维空间中,不考虑重合的情形,两条直线可以相交、平行或歪斜(异面)。给定两条直线 A 1 x − B 1 y + D 1 = 0 C 1 y − A 1 z + E 1 = 0 B 1 z − C 1 x + F 1 = 0 {displaystyle {begin{alignedat}{7}A_{1}x&&;-;&&B_{1}y&&;+;&&D_{1};&&=;&&0&\C_{1}y&&;-;&&A_{1}z&&;+;&&E_{1};&&=;&&0&\B_{1}z&&;-;&&C_{1}x&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A 2 x − B 2 y + D 2 = 0 C 2 y − A 2 z + E 2 = 0 B 2 z − C 2 x + F 2 = 0 {displaystyle {begin{alignedat}{7}A_{2}x&&;-;&&B_{2}y&&;+;&&D_{2};&&=;&&0&\C_{2}y&&;-;&&A_{2}z&&;+;&&E_{2};&&=;&&0&\B_{2}z&&;-;&&C_{2}x&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,二者相交的条件是这时两线的相交点可从克莱姆法则求得若两线相交,则会形成夹角。两线之间的夹角,通常指不大于90°的一只。在二维平面上,给定直线 y = m x + b {displaystyle y=mx+b} ,该线与x-轴的夹角为给定两条直线 y = m 1 x + b 1 {displaystyle y=m_{1}x+b_{1}} 和 y = m 2 x + b 2 {displaystyle y=m_{2}x+b_{2}} ,二者互相垂直当且仅当而其他情况,两线相交所形成的夹角 θ {displaystyle theta } ( 0 ∘ ≤ θ < 90 ∘ {displaystyle 0^{circ }leq theta <90^{circ }} ),则由给出。给定相交直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有在三维空间中,给定两条相交直线 y = m 1 x + b 1 z = n 1 x + c 1 {displaystyle {begin{alignedat}{5}y&&;=;&&m_{1}x&&;+;&&b_{1}\z&&;=;&&n_{1}x&&;+;&&c_{1}end{alignedat}}} 和 y = m 2 x + b 2 z = n 2 x + c 2 {displaystyle {begin{alignedat}{5}y&&;=;&&m_{2}x&&;+;&&b_{2}\z&&;=;&&n_{2}x&&;+;&&c_{2}end{alignedat}}} ,二者互相垂直当且仅当而其他情况,两线相交所形成的夹角 θ {displaystyle theta } ( 0 ∘ ≤ θ < 90 ∘ {displaystyle 0^{circ }leq theta <90^{circ }} ),则由给出,当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。若取 n 1 = n 2 = 0 {displaystyle n_{1}=n_{2}=0} , 则公式退化成二维的形式。给定相交直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有一般情况下,两条直线的距离,是指最短距离。二维情况下,两条相交直线的距离必然为 0 {displaystyle 0} 。若有两条平行直线 A x + B y + C 1 = 0 {displaystyle Ax+By+C_{1}=0} 及 A x + B y + C 2 = 0 {displaystyle Ax+By+C_{2}=0} ,则有距离给定平行向量式 r = a 1 + λ u {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u} } 和 r = a 2 + μ u {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u} } ,则有三维情况下,两条相交直线的距离同样必然为 0 {displaystyle 0} 。若有两条平行直线 A x − B y + D 1 = 0 C y − A z + E 1 = 0 B z − C x + F 1 = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D_{1};&&=;&&0&\Cy&&;-;&&Az&&;+;&&E_{1};&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A x − B y + D 2 = 0 C y − A z + E 2 = 0 B z − C x + F 2 = 0 {displaystyle {begin{alignedat}{7}Ax&&;-;&&By&&;+;&&D_{2};&&=;&&0&\Cy&&;-;&&Az&&;+;&&E_{2};&&=;&&0&\Bz&&;-;&&Cx&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,则有距离给定平行直线向量式 r = a 1 + λ u {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u} } 和 r = a 2 + μ u {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u} } ,则有两条歪斜直线(即既非相交,亦非平行)有方程 A 1 x − B 1 y + D 1 = 0 C 1 y − A 1 z + E 1 = 0 B 1 z − C 1 x + F 1 = 0 {displaystyle {begin{alignedat}{7}A_{1}x&&;-;&&B_{1}y&&;+;&&D_{1};&&=;&&0&\C_{1}y&&;-;&&A_{1}z&&;+;&&E_{1};&&=;&&0&\B_{1}z&&;-;&&C_{1}x&&;+;&&F_{1};&&=;&&0end{alignedat}}} 及 A 2 x − B 2 y + D 2 = 0 C 2 y − A 2 z + E 2 = 0 B 2 z − C 2 x + F 2 = 0 {displaystyle {begin{alignedat}{7}A_{2}x&&;-;&&B_{2}y&&;+;&&D_{2};&&=;&&0&\C_{2}y&&;-;&&A_{2}z&&;+;&&E_{2};&&=;&&0&\B_{2}z&&;-;&&C_{2}x&&;+;&&F_{2};&&=;&&0end{alignedat}}} ,则有距离当中 | a b c d | = a d − b c {displaystyle {begin{vmatrix}a&b\c&dend{vmatrix}}=ad-bc} 。给定歪斜直线向量式 r = a 1 + λ u 1 {displaystyle mathbf {r} =mathbf {a_{1}} +lambda mathbf {u_{1}} } 和 r = a 2 + μ u 2 {displaystyle mathbf {r} =mathbf {a_{2}} +mu mathbf {u_{2}} } ,则有距离

相关

  • 脑控脑控是指代用电脑、无线电、电磁辐射(如微波听觉效应)、或其他科学技术手段,远程控制受害者的大脑精神、意识,即“Electronic harassment”所称的精神控制(Mind control)。脑控是
  • 化学元素丰度化学元素丰度(英语:Abundance of the chemical elements)是在测量上与所有元素相比较所得到含量多寡的比值。丰度可以是质量的比值或是莫耳数(气体的原子数量比值或是分子数量
  • 罐装食品罐装食品,是指用金属制的容器所包装的食品,俗称的罐头,是其中一种罐装食品,罐头食品是一种储存食物的方法。食物先被高温处理,再被放进以锡或其他金属制造的罐内,并进行真空处理。
  • 地动仪候风地动仪是中国古代发明欲侦测地震的仪器,也是世界最早的地震仪,但现已失传。据传当年的候风地动仪毁于东汉战火。现在展览的各种候风地动仪,是由各国考古学家,根据古书中的描
  • 二级核酸二级结构(英语:Nucleic acid secondary structure)是单个核酸聚合物内或两个聚合物之间的碱基对相互作用。它可以被表示为在核酸分子中配对的碱基的一个列表。 生物DNA的和
  • 跳水跳水自1904年夏季奥运会起成为是夏季奥运会比赛项目之一。跳水和游泳、花样游泳和水球都由国际游泳联合会管理和监督。国际奥林匹克委员会规定了以下项目为奥运会跳水项目。
  • 失败国家指数脆弱国家指数(FSI,Fragile States Index,前身为失败国家指数)是根据和平基金会统计及列出的排名,在2018年共有178个评估对象国。一个失败国家有几个表现。常见的指标包括一个国家
  • 联合晚报《联合晚报》(英语译名:United Evening News,简称联晚)是台湾一份综合性中文晚报,隶属于联合报系,由王惕吾所创办。其政治立场类似《联合报》,立场偏向泛蓝。目前是台湾唯一的晚报
  • 溶剂壳在物理化学中,溶剂壳(Solvation shell)为一种用来描述溶剂化的结构。溶剂壳为一种任何化学物质像溶剂一样,围绕着溶质物质的现象。当溶剂为水时,所形成似壳的现象,通常会被称为水
  • span class=nowrapTiClsub4/sub/span四氯化钛,或氯化钛(IV),是化学式为 TiCl4 的无机化合物。四氯化钛是生产金属钛及其化合物的重要中间体。室温下,四氯化钛为无色液体,并在空气中发烟,生成二氧化钛固体和盐酸液滴的