非等向性扩散

✍ dations ◷ 2025-04-26 17:16:09 #Image processing,Image noise reduction techniques

在影像处理及电脑视觉领域中,Anistropic Diffusion(非等向性扩散)是一项用来减少影像噪声但却不会影响到影像中较重要成分的技术,像是边界、线条或者影像中较明显的细节。一般影像扩散处理是将原始影像与二维高斯滤波器进行卷积,这种扩散处理是线性且具有空间不变性的转换。而非等向性扩散处理则是会根据影像产生区域性的滤波器,再将原始影像与产生的滤波器进行卷积,所以非等向性扩散是一种非线性且不具有空间不变性的转换。

Perona和Malik在1987年提出不具有空间不变性的滤波器时,其原始的概念是等向性扩散但会根据影像内容产生不同的滤波器,这也使得在靠近边界的区域其产生的滤波器会很类似狄拉克δ函数,让边界及影像中较重要的结构能够在经过扩散处理后还能保留下来。而当初Perona和Malik称之为非等向性扩散,即使其产生的区域性滤波器是具有等向性的,而当时这种处理又被称为不均匀扩散、非线性扩散及Perona-Malik扩散。而实际上的非等向性扩散则是根据边界及结构的方向而产生非等向性的区域性滤波器,这种方法又被称为shape-adapted smoothing或coherence enhancing diffusion。其产生的影像可以同时进行平滑化并保留原本影像的结构,而这类方法所使用的扩散方程式通常是根据在原始影像中的位置及原始影像的像素值所产生。

虽然其结果是由原始影像及区域性滤波器卷积所产生,但实际应用上这样会需要大量的运算,所以通常会用近似法来进行加速,也就是说每一张新的影像是由上一张产生的影像套用非等向性扩散所产生。整体来说,非等向性扩散是一种迭代性的处理,其产生的结果会越来越平滑直到达到所需要的结果。

Ω R 2 {\displaystyle \Omega \subset \mathbb {R} ^{2}} 代表的是平面上的子集合,且 I ( , t ) : Ω R {\displaystyle I(\cdot ,t):\Omega \rightarrow \mathbb {R} } 是一组灰阶影像,则非等向性扩散可以定义为

Δ {\displaystyle \Delta } 代表的是拉普拉斯运算子, {\displaystyle \nabla } 代表的是梯度运算子, d i v ( ) {\displaystyle \mathrm {div} (\dots )} 则是散度运算子,而 c ( x , y , t ) {\displaystyle c(x,y,t)} 代表的是扩散系数. c ( x , y , t ) {\displaystyle c(x,y,t)} 控制扩散的程度,而且通常是根据影像梯度所产生的方程式,所以能够保存原本影像中的边界。 Pietro Perona 和 Jitendra Malik 在1990年最早提出非等向性扩散的概念,且提出了两种计算扩散系数的方程式:

常数K控制方程式对于边界的敏感度,而其值通常是根据影像中的噪音所产生,或者根据实验所产生。

M {\displaystyle M} 代表的是平滑的影像,则上面的扩散方程式就可以被转换成用梯度下降法寻找方程式 E : M R {\displaystyle E:M\rightarrow \mathbb {R} } 的最小能量,而 E : M R {\displaystyle E:M\rightarrow \mathbb {R} } 则定义为

其中 g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } 是一个实数函数,其代表的是扩散系数之间的关系。对于可微函数 h {\displaystyle h}

假设 E I {\displaystyle \nabla E_{I}} 代表 E 对 L 2 ( Ω , R ) {\displaystyle L^{2}(\Omega ,\mathbb {R} )} 内积的梯度,则

因此,其梯度下降法的方程式可以表示成

我们假设 c = g {\displaystyle c=g'} 就可以得到非等向性方程式了。

修正后的Perona-Malik模型,又被成为正规化的P-M方程式,其未知部分在非线性部分与高斯函数进行卷积,得到

其中 G σ = C σ ( 1 / 2 ) e x p ( | x | 2 / 4 σ ) {\displaystyle G_{\sigma }=C{\sigma }^{-\left(1/2\right)}exp\left(-|x|^{2}/4{\sigma }\right)} .

正规化虽然可以增加其稳定性,但同时也会产生模糊效果,所以要在事前得知噪音的程度才能够决定正规化的所需要的常数。

非等向性扩散可以用来减少数位影像的噪声而不会模糊其边界。如果在固定的扩散系数下,非等向性扩散方程式所减少的heat equation与高斯模糊是相同的,但这样会在消除噪声时同时模糊边界。如果扩散系数是根据边界侦测方程式来决定,像是Perona Malik 模型的话,其结果会在区域内进行扩散而且不会使其超过较强的边界,因此在移除噪声后,影像中的边界及结构仍可以保留下来。

除了移除噪声之外,非等向性扩散也可以用于边界侦测。只要根据边界侦测方程式来进行多次递回的非等向性扩散,其最终结果影像会趋向于剩下一个一个的色块,而相邻色块之间的区域则会被侦测为边界。

相关

  • 长春花属生物碱长春花属(学名:Catharanthus)包含了八种多年生的草本植物。其中七种原产于马达加斯加岛,而第八种C. pusillus则来自斯里兰卡。先前这属植物被列于近亲属—蔓长春花属(Vinca)—之
  • 丨部,是为汉字索引中的部首之一,康熙字典214个部首中的第二个(一划的则为第二个)。就繁体和简体中文中,丨部归于一划部首。丨部只以中间为部字。且无其他部首可用者将部首归为丨
  • 威廉·詹宁斯·布莱恩威廉·詹宁斯·布莱恩(William Jennings Bryan,1860年3月19日-1925年7月26日),美国政治家、律师。能言善辩,曾三次代表民主党竞选总统(1896、1900、1908),均失败。他是美国现代20世纪
  • 页面构造原理页面构造原理是书籍设计中用来描述页面比例, 书籍中空白和文字区域的构成的一套原则.在20世纪中末期 扬·奇肖尔德 在前人 J. A. van de Graaf, Raúl M. Rosarivo, Hans Ka
  • 胡泳 (学者)胡泳(学者)政治学博士,北京大学新闻与传播学院教授(2007年至今)。中国大陆本地的传媒称其为“数字化时代的严复”。
  • 十二殖民地十二殖民地(Twelve Colonies),或称人类十二殖民地(Twelve Colonies of Man )、寇伯十二殖民地(Twelve Colonies of Kobol),是科幻影集太空堡垒卡拉狄加中的虚构国家,出现在太空堡垒卡
  • A·N·R·罗宾逊A·N·R·罗宾逊(Arthur Napoleon Raymond Robinson,1926年12月16日-2014年4月9日),是一名特立尼达和多巴哥政治人物。1997年5月19日,他当选为特立尼达和多巴哥总统,2003年5月17日
  • 张若昀张若昀(1988年8月24日-),出生于中华人民共和国北京市,影视演员。北京电影学院2007级表演系大专毕业。2004年,参演首部电视剧《海的誓言》进入演艺圈。2011年,凭借革命剧《黑狐》中
  • 中里优中里优(日语:中里 優/なかさと ゆう ,1994年7月14日-),日本足球运动员,日本国家女子足球队成员。从2016年,她共为日本国家女子足球队出场16次。她是2018年亚洲运动会女子足球比赛的
  • 捷克斯洛伐克新浪潮捷克斯洛伐克新浪潮 (也称为捷克新浪潮)是对于从1960年代开始制作电影的捷克斯洛伐克一些导演群体和该群体发起的电影运动的称呼。相关导演包括米洛斯·福尔曼,维拉·希蒂洛娃,