非等向性扩散

✍ dations ◷ 2025-08-03 06:09:20 #Image processing,Image noise reduction techniques

在影像处理及电脑视觉领域中,Anistropic Diffusion(非等向性扩散)是一项用来减少影像噪声但却不会影响到影像中较重要成分的技术,像是边界、线条或者影像中较明显的细节。一般影像扩散处理是将原始影像与二维高斯滤波器进行卷积,这种扩散处理是线性且具有空间不变性的转换。而非等向性扩散处理则是会根据影像产生区域性的滤波器,再将原始影像与产生的滤波器进行卷积,所以非等向性扩散是一种非线性且不具有空间不变性的转换。

Perona和Malik在1987年提出不具有空间不变性的滤波器时,其原始的概念是等向性扩散但会根据影像内容产生不同的滤波器,这也使得在靠近边界的区域其产生的滤波器会很类似狄拉克δ函数,让边界及影像中较重要的结构能够在经过扩散处理后还能保留下来。而当初Perona和Malik称之为非等向性扩散,即使其产生的区域性滤波器是具有等向性的,而当时这种处理又被称为不均匀扩散、非线性扩散及Perona-Malik扩散。而实际上的非等向性扩散则是根据边界及结构的方向而产生非等向性的区域性滤波器,这种方法又被称为shape-adapted smoothing或coherence enhancing diffusion。其产生的影像可以同时进行平滑化并保留原本影像的结构,而这类方法所使用的扩散方程式通常是根据在原始影像中的位置及原始影像的像素值所产生。

虽然其结果是由原始影像及区域性滤波器卷积所产生,但实际应用上这样会需要大量的运算,所以通常会用近似法来进行加速,也就是说每一张新的影像是由上一张产生的影像套用非等向性扩散所产生。整体来说,非等向性扩散是一种迭代性的处理,其产生的结果会越来越平滑直到达到所需要的结果。

Ω R 2 {\displaystyle \Omega \subset \mathbb {R} ^{2}} 代表的是平面上的子集合,且 I ( , t ) : Ω R {\displaystyle I(\cdot ,t):\Omega \rightarrow \mathbb {R} } 是一组灰阶影像,则非等向性扩散可以定义为

Δ {\displaystyle \Delta } 代表的是拉普拉斯运算子, {\displaystyle \nabla } 代表的是梯度运算子, d i v ( ) {\displaystyle \mathrm {div} (\dots )} 则是散度运算子,而 c ( x , y , t ) {\displaystyle c(x,y,t)} 代表的是扩散系数. c ( x , y , t ) {\displaystyle c(x,y,t)} 控制扩散的程度,而且通常是根据影像梯度所产生的方程式,所以能够保存原本影像中的边界。 Pietro Perona 和 Jitendra Malik 在1990年最早提出非等向性扩散的概念,且提出了两种计算扩散系数的方程式:

常数K控制方程式对于边界的敏感度,而其值通常是根据影像中的噪音所产生,或者根据实验所产生。

M {\displaystyle M} 代表的是平滑的影像,则上面的扩散方程式就可以被转换成用梯度下降法寻找方程式 E : M R {\displaystyle E:M\rightarrow \mathbb {R} } 的最小能量,而 E : M R {\displaystyle E:M\rightarrow \mathbb {R} } 则定义为

其中 g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } 是一个实数函数,其代表的是扩散系数之间的关系。对于可微函数 h {\displaystyle h}

假设 E I {\displaystyle \nabla E_{I}} 代表 E 对 L 2 ( Ω , R ) {\displaystyle L^{2}(\Omega ,\mathbb {R} )} 内积的梯度,则

因此,其梯度下降法的方程式可以表示成

我们假设 c = g {\displaystyle c=g'} 就可以得到非等向性方程式了。

修正后的Perona-Malik模型,又被成为正规化的P-M方程式,其未知部分在非线性部分与高斯函数进行卷积,得到

其中 G σ = C σ ( 1 / 2 ) e x p ( | x | 2 / 4 σ ) {\displaystyle G_{\sigma }=C{\sigma }^{-\left(1/2\right)}exp\left(-|x|^{2}/4{\sigma }\right)} .

正规化虽然可以增加其稳定性,但同时也会产生模糊效果,所以要在事前得知噪音的程度才能够决定正规化的所需要的常数。

非等向性扩散可以用来减少数位影像的噪声而不会模糊其边界。如果在固定的扩散系数下,非等向性扩散方程式所减少的heat equation与高斯模糊是相同的,但这样会在消除噪声时同时模糊边界。如果扩散系数是根据边界侦测方程式来决定,像是Perona Malik 模型的话,其结果会在区域内进行扩散而且不会使其超过较强的边界,因此在移除噪声后,影像中的边界及结构仍可以保留下来。

除了移除噪声之外,非等向性扩散也可以用于边界侦测。只要根据边界侦测方程式来进行多次递回的非等向性扩散,其最终结果影像会趋向于剩下一个一个的色块,而相邻色块之间的区域则会被侦测为边界。

相关

  • 乌克兰苏维埃社会主义共和国乌克兰苏维埃社会主义共和国(乌克兰语:Українська Радянська Соціалістична Республіка;俄语:Украинская Советск
  • 念力念力,也被翻译为意念(psychokinesis,来自希腊语ψυχή , “psyche(心灵)”,意味着思想,灵魂,心,或生息;和κίνησις , “kinesis(室壁运动)”或念动力,意思是运动;字面意思为“来自理
  • 京义线京义线(朝鲜语:경의선/京義線 Gyeong'ui seon */?),为韩国铁道公社路线,连结首尔特别市龙山区首尔站与京畿道坡州市都罗山站。原先首尔至新义州间可直通并进入中国。但是韩半岛
  • Golden ChildGolden Child(韩语:골든차일드)为韩国Woollim娱乐于2017年推出之十人男子偶像团体,最初由十一名成员组成,现任成员包括大烈、Y、长埈、TAG 、胜民、宰铉、知范、东炫、周灿、普闵
  • 罗伯特·科赫研究所罗伯特·科赫研究所(德语:Robert Koch Institut 简称RKI)是德国联邦政府机构和研究机构,负责疾病控制和预防,位于柏林和韦尼格罗德。为联邦高级机构,隶属于联邦卫生部。该研究所
  • 卡马尔甘杰卡马尔甘杰(Kamalganj),是印度北方邦Farrukhabad县的一个城镇。总人口14659(2001年)。该地2001年总人口14659人,其中男性7963人,女性6696人;0—6岁人口2423人,其中男1335人,女1088人;识
  • 威金威金(Waacking)是一种舞蹈形式,随着迪斯可(Disco)及放克(Funk)音乐的节拍移动手臂,以肩膀上方和后方的手臂运动为主,也包含其他元素,如摆姿势和走位。同时也会模仿电影明星戏剧性的姿
  • 钱顺时钱顺时(?-?),字道隆,直隶苏州府常熟县人,民籍,明朝政治人物。应天府乡试第一百二名。嘉靖三十八年(1559年),登己未科二甲第七十名进士。不久卒。长于经史,曾据二十一史及历代野史,编成《古
  • 吉田一将吉田一将(日语:吉田 一将/よしだ かずまさ ,1989年9月24日-)是一名出身于日本奈良县橿原市的棒球选手,司职投手,目前效力于日本职棒欧力士野牛。26能见笃史 | 73 高山郁夫 | 76 风
  • 微波滤波器射频(RF)和微波滤波器代表一类电子滤波器,旨在对兆赫兹至吉赫兹频率范围(中频和极高频)的信号进行操作的器件。该频率范围是大多数广播电台、电视、无线通信(手机、Wi-Fi等)使用的