非等向性扩散

✍ dations ◷ 2024-12-22 23:22:53 #Image processing,Image noise reduction techniques

在影像处理及电脑视觉领域中,Anistropic Diffusion(非等向性扩散)是一项用来减少影像噪声但却不会影响到影像中较重要成分的技术,像是边界、线条或者影像中较明显的细节。一般影像扩散处理是将原始影像与二维高斯滤波器进行卷积,这种扩散处理是线性且具有空间不变性的转换。而非等向性扩散处理则是会根据影像产生区域性的滤波器,再将原始影像与产生的滤波器进行卷积,所以非等向性扩散是一种非线性且不具有空间不变性的转换。

Perona和Malik在1987年提出不具有空间不变性的滤波器时,其原始的概念是等向性扩散但会根据影像内容产生不同的滤波器,这也使得在靠近边界的区域其产生的滤波器会很类似狄拉克δ函数,让边界及影像中较重要的结构能够在经过扩散处理后还能保留下来。而当初Perona和Malik称之为非等向性扩散,即使其产生的区域性滤波器是具有等向性的,而当时这种处理又被称为不均匀扩散、非线性扩散及Perona-Malik扩散。而实际上的非等向性扩散则是根据边界及结构的方向而产生非等向性的区域性滤波器,这种方法又被称为shape-adapted smoothing或coherence enhancing diffusion。其产生的影像可以同时进行平滑化并保留原本影像的结构,而这类方法所使用的扩散方程式通常是根据在原始影像中的位置及原始影像的像素值所产生。

虽然其结果是由原始影像及区域性滤波器卷积所产生,但实际应用上这样会需要大量的运算,所以通常会用近似法来进行加速,也就是说每一张新的影像是由上一张产生的影像套用非等向性扩散所产生。整体来说,非等向性扩散是一种迭代性的处理,其产生的结果会越来越平滑直到达到所需要的结果。

Ω R 2 {\displaystyle \Omega \subset \mathbb {R} ^{2}} 代表的是平面上的子集合,且 I ( , t ) : Ω R {\displaystyle I(\cdot ,t):\Omega \rightarrow \mathbb {R} } 是一组灰阶影像,则非等向性扩散可以定义为

Δ {\displaystyle \Delta } 代表的是拉普拉斯运算子, {\displaystyle \nabla } 代表的是梯度运算子, d i v ( ) {\displaystyle \mathrm {div} (\dots )} 则是散度运算子,而 c ( x , y , t ) {\displaystyle c(x,y,t)} 代表的是扩散系数. c ( x , y , t ) {\displaystyle c(x,y,t)} 控制扩散的程度,而且通常是根据影像梯度所产生的方程式,所以能够保存原本影像中的边界。 Pietro Perona 和 Jitendra Malik 在1990年最早提出非等向性扩散的概念,且提出了两种计算扩散系数的方程式:

常数K控制方程式对于边界的敏感度,而其值通常是根据影像中的噪音所产生,或者根据实验所产生。

M {\displaystyle M} 代表的是平滑的影像,则上面的扩散方程式就可以被转换成用梯度下降法寻找方程式 E : M R {\displaystyle E:M\rightarrow \mathbb {R} } 的最小能量,而 E : M R {\displaystyle E:M\rightarrow \mathbb {R} } 则定义为

其中 g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } 是一个实数函数,其代表的是扩散系数之间的关系。对于可微函数 h {\displaystyle h}

假设 E I {\displaystyle \nabla E_{I}} 代表 E 对 L 2 ( Ω , R ) {\displaystyle L^{2}(\Omega ,\mathbb {R} )} 内积的梯度,则

因此,其梯度下降法的方程式可以表示成

我们假设 c = g {\displaystyle c=g'} 就可以得到非等向性方程式了。

修正后的Perona-Malik模型,又被成为正规化的P-M方程式,其未知部分在非线性部分与高斯函数进行卷积,得到

其中 G σ = C σ ( 1 / 2 ) e x p ( | x | 2 / 4 σ ) {\displaystyle G_{\sigma }=C{\sigma }^{-\left(1/2\right)}exp\left(-|x|^{2}/4{\sigma }\right)} .

正规化虽然可以增加其稳定性,但同时也会产生模糊效果,所以要在事前得知噪音的程度才能够决定正规化的所需要的常数。

非等向性扩散可以用来减少数位影像的噪声而不会模糊其边界。如果在固定的扩散系数下,非等向性扩散方程式所减少的heat equation与高斯模糊是相同的,但这样会在消除噪声时同时模糊边界。如果扩散系数是根据边界侦测方程式来决定,像是Perona Malik 模型的话,其结果会在区域内进行扩散而且不会使其超过较强的边界,因此在移除噪声后,影像中的边界及结构仍可以保留下来。

除了移除噪声之外,非等向性扩散也可以用于边界侦测。只要根据边界侦测方程式来进行多次递回的非等向性扩散,其最终结果影像会趋向于剩下一个一个的色块,而相邻色块之间的区域则会被侦测为边界。

相关

  • 二苯乙醇酸-3-喹咛环酯二苯乙醇酸-3-喹咛环酯(QNB)- IUPAC名 1-azabicyclooct-3-yl 2-hydroxy-2,2-diphenylacetate;美军代号:EA-2277;北约代号:BZ(毕兹);苏联代号:Substance 78。是一种无味的军事失能剂(
  • 兽虱科见内文兽虱科(学名:Haematopinidae),又名血虱科,是啮虫目吸虱亚目之下的一个科。
  • 优婆离优婆离(梵:उपालि Upāli)又作优婆利,邬波离,优波离,忧波利。译曰近取,近执,罗汉名。悉达太子执事之人,持律第一之比丘。第一次结集时,他诵出了律藏,在《佛本行集经》五十三《优波
  • 毛利就隆毛利就隆(1602年10月17日-1679年9月12日)是江户时代的大名。周防下松藩和德山藩初代藩主。就隆系毛利家初代。父亲是毛利辉元。受兄长秀就授与偏讳,亦取祖父隆元名中一字,于是以
  • 越南人民艺术家列表从1984年到2019年一共有9批(1984、1988、1993、1997、2001、2007、2011、2015和2019)一共451位优秀艺术家获得了越南人民艺术家 称号。2010年,艺术家依莫安破格获得了该称号,使
  • 懒惰怠惰,指懈怠、好逸恶劳。有时候懒惰是因缺乏行动的欲望,而不想做任何事。怎样才被视为懒惰应依据具体的文化、社会情况及其程度而定。短暂的放松或小憩,通常是很有好处的,有助于
  • 李师龙李师龙(1977年8月10日-),广东广州人,中国国际象棋棋手,国际象棋特级大师。李师龙从9岁开始学棋,曾两次获得过中国国际象棋个人赛前三名。2002年,晋升为国际象棋特级大师。2005年亚洲
  • 光亮道节光亮道节(荷兰语:Lichtjesroute)是每年秋天在荷兰埃因霍温举行的一个节日。9月18日由游行开幕,庆祝1944年埃因霍温在第二次世界大战的解放。除此之外,这个节日也有创造“光亮童话
  • 黑丁顿坐标:51°45′54″N 1°12′43″W / 51.765°N 1.212°W / 51.765; -1.212黑丁顿(英语:Headington)是牛津市周边的一个卫星城,该城市位于黑丁顿山顶端,四周由泰晤士河及其支流环绕
  • 余振中余振中(1925年3月-2014年4月30日),曾用名余康健,男,浙江余姚人,中华人民共和国政治人物,曾任民建河北省委主委,河北省政协副主席,第六、七、八届全国政协委员。