在几何学中,双三斜十二面体是非凸均匀多面体中的一种星形多面体,其索引编号为U41。温尼尔在他的书《多面体模型》中列出许多星形多面体模型,其中也收录了此种形状,并给予编号W80。其可以视为小双三斜三十二面体经过刻面(英语:faceting)后的多面体。
双三斜十二面体的对偶多面体是一种星形二十面体,是由凹六边形组成的内侧三角六边形二十面体。
双三斜十二面体共有24个面、60条边和20个顶点。
双三斜十二面体由24个面组成,其24个面中,有12个五边形和12个五角星,每个面都是3个五边形和3个五角星的公共顶点。
边长为单位长,且几何中心位于原点的双三斜十二面体的顶点座标为:
双三斜十二面体的二面角为五平方根倒数的反余弦值:
双三斜十二面体的对偶多面体是内侧三角六边形二十面体,是一个具有20个面、60条边和24个顶点,由20个全等的凹六边形构成的星形多面体。
由于双三斜十二面体的凸包是正十二面体,且也无任何顶点位于其凸包内部,因此会与其他凸包为正十二面体、无顶点位于其凸包内部的多面体有相同的顶点排布,例如小双三斜三十二面体和大双三斜三十二面体。另外,其棱排布也与小双三斜三十二面体、大双三斜三十二面体和五复合立方体相同。其中,双三斜三十二面体相同的原因是因为拥有共同的五角星面、大双三斜三十二面体亦相同的原因是因为拥有拥有共同的五边形面。
此外,其可以视为正十二面体刻面(英语:faceting)后的多面体:将五边形面改成位在正十二面体内部可能的五边形内,其余以五角星面填满剩下的部分形成封闭的多面体。
双三斜十二面体的对偶多面体为内侧三角六边形二十面体,是一种星形二十面体。但由于其与《五十九种二十面体》中收录的大三角六边形二十面体有些许不同,因此被描述为“遗失的星形二十面体”。
由于双三斜十二面体的五角星形面可经由拓朴变形变为五边形面,因此,这种形状在拓朴中相当于六阶五边形镶嵌的商空间。
因此在另外一个索引中也被看作是一种抽象(英语:Abstract_polytope)的正多面体:
双三斜十二面体与其对偶的复合体为复合双三斜十二面体内侧三角六边形二十面体。其共有44个面、120条边和44个顶点,其尤拉示性数为-32,亏格为17,有32个非凸面,在威佐夫记号中以(3 5/3 | 5)表示。