首页 >
相关系数
✍ dations ◷ 2025-11-01 08:35:10 #相关系数
在概率论和统计学中,相关(Correlation),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。英国生物学家和统计学家弗朗西斯·高尔顿首先提出“相关”这一概念,英国数学家卡尔·皮尔逊在此基础上做出了进一步发展。对于不同测量尺度的变数,有不同的相关系数可用:其中,E是数学期望,cov表示协方差,
σ
X
{displaystyle sigma _{X}}
和
σ
Y
{displaystyle sigma _{Y}}
是标准差。因为
μ
X
=
E
(
X
)
{displaystyle mu _{X}=E(X)}
,
σ
X
2
=
E
(
X
2
)
−
E
2
(
X
)
{displaystyle sigma _{X}^{2}=E(X^{2})-E^{2}(X)}
,同样地,对于
Y
{displaystyle Y}
,可以写成当两个变量的标准差都不为零,相关系数才有定义。从柯西-施瓦茨不等式可知,相关系数的绝对值不超过1。当两个变量的线性关系增强时,相关系数趋于1或-1。当一个变量增加而另一变量也增加时,相关系数大于0。当一个变量的增加而另一变量减少时,相关系数小于0。当两个变量独立时,相关系数为0,但反之并不成立。这是因为相关系数仅仅反映了两个变量之间是否线性相关。比如说,X是区间[-1,1]上的一个均匀分布的随机变量。Y = X2.那么Y是完全由X确定。因此Y和X不独立,但相关系数为0。或者说他们是不相关的。当Y和X服从联合正态分布时,其相互独立和不相关是等价的。当一个或两个变量带有测量误差时,他们的相关性就受到削弱,这时,“反衰减”性(disattenuation)是一个更准确的系数。对于居中的数据来说(何谓居中?也就是每个数据减去样本均值,居中后它们的平均值就为0),相关系数可以看作是两个随机变量中得到的样本集向量之间夹角的cosine函数。一些实际工作者更喜欢用非居中的相关系数(与皮尔逊系数不相兼容)。看下面的例子中有一个比较。例如,假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。则我们现在有两个有序的包含5个元素的向量x、y:x =(1, 2, 3, 5, 8)、 y =(0.11, 0.12, 0.13, 0.15, 0.18)
使用一般的方法来计算向量间夹角(参考数量积),未居中的相关性系数如下:上面的数据实际上是故意选择了一个完美的线性关系:y = 0.10 + 0.01 x。因此皮尔逊相关系数应该就是1。把数据居中(x中数据减去E (x) = 3.8,y中数据减去E (y) = 0.138)后得到:x =(−2.8, −1.8, −0.8, 1.2, 4.2)、y =(−0.028, −0.018, −0.008, 0.012, 0.042),由此得到了预期结果:相关系数的计算过程可表示为:将每个变量都转化为标准单位,乘积的平均数即为相关系数。两个变量的关系可以直观地用散点图表示,当其紧密地群聚于一条直线的周围时,变量间存在强相关。一个散点图可以用五个统计量来概括。所有x值得平均数,所有x值的SD,所有y值得平均数,所有y值的SD,相关系数r.将第一个变量记为x ,第二个变量记为y ,相关系数为r,则可以通过以下公式:r = 的平均数
相关
- 癫痫持续状态癫痫重积状态(拉丁语:Status epilepticus (SE))的定义是一次癫痫发作超过五分钟、或是五分钟内癫痫发作超过一次且每次发作之间没有回复到正常状态。这种癫痫发作的状态可能是
- 尘埃尘埃可以指:
- 塞萨洛尼基塞萨洛尼基(英语: Thessaloniki; 希腊语: Θεσσαλονίκη),又译作萨洛尼卡、塞萨洛尼卡、萨罗尼加,旧译作帖撒罗尼迦或忒萨洛尼卡(按古希腊语发音),是希腊第二大城市,也是
- 人的成长与发展人的成长(Human development)是指人发育(英语:Auxology)到成年的过程。以生物学的观点,是从一个细胞的受精卵成长到成人的过程。受精是指精子成功的进入卵子细胞核内。精子和卵子
- 支气管哮喘喘息 、哮喘(英语:asthma,又称气喘)是常见的气道慢性炎症疾病,主要特征是多变和复发的症状、可逆性气流阻塞,和支气管痉挛(英语:bronchospasm)。常见症状表现为喘息 、咳嗽、胸腔紧
- 西番莲属大约有500种,例如:西番莲属(学名:Passiflora)是西番莲科中拥有500个种的属。它们大部分是藤蔓,有一些种类是灌木,少数种类是草本植物,百香果Passiflora edulis是本属最有名的成员。
- 今日美国《今日美国》(英语:USA Today)是美国唯一的彩色版全国性对开日报,1982年9月15日创刊,总部设在弗吉尼亚州费尔法克斯县的麦克林(McLean),属全美最大的甘尼特(Gannett)报团。《今日美国
- 软性错误软性错误是电子学及电脑运算中的错误,是因为一个信号或数据不正确造成的错误。软性错误可能是因为缺陷而造成,多半认为是因为设计或是架构上的错误,或者是因零件损坏而产生。软
- 克娄巴特拉七世克利奥帕特拉七世(笃爱父亲者)(希腊语:Κλεοπάτρα Φιλοπάτωρ,又译克娄巴特拉七世、克利欧佩特拉七世、克丽奥佩特拉七世;前69年-前30年8月12日),世称“埃及艳后”或
- 阿蒙涅姆赫特二世阿蒙涅姆赫特二世(英语:Amenemhet II)古埃及中王国时期第十二王朝的第三任国王。(约公元前1929年—约公元前1895年在位),为第十二王朝建立者阿蒙涅姆赫特一世之孙。他促进了埃及的
