范德华方程

✍ dations ◷ 2025-07-15 05:17:48 #范德华方程
范德华方程(van der Waals equation)(一译范德瓦耳斯方程),简称范氏方程,是荷兰物理学家范德华于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点在于将被理想气体模型所忽略的的气体分子自身大小和分子之间的相互作用力考虑进来,以便更好地描述气体的宏观物理性质。范德华方程具体形式为:式中更常用的形式为:在第二个方程里下表列出了部分气体的a,b 的值在上述方程中必须严格区分总体平均性质和单个分子的性质。譬如,第一个方程中的 v {displaystyle v} 是每个分子平均占有空间的大小(可以理解成分子平均“势力范围”的大小),而 b ′ {displaystyle b'} 则为单个分子本身“包含”的体积(若为单原子分子如稀有气体, b ′ {displaystyle b'} 就是原子半径内包含的体积)。范氏方程对气-液临界温度以上流体性质的描写优于理想气体方程。对温度稍低于临界温度的液体和低压气体也有较合理的描述。但是,当描述对象处于状态参量空间(P,V,T)中气液相变区(即正在发生气液转变)时,对于固定的温度,气相的压强恒为所在温度下的饱和蒸气压,即不再随体积 V {displaystyle V} (严格地说应该是单位质量气体占用的体积,即比容)变化而变化,所以这种情况下范氏方程不再适用。下面以理想气体状态方程为基础,推导范氏方程。若把气体视为由体积无限小、相互之间无作用力的分子组成,这种模型便是理想气体模型,与其相对应的状态方程是:若抛弃前一个的假设,把组成气体的分子视为有一定大小的刚性球(其半径称为范德华半径),用 b {displaystyle b} 表示这些“球”的体积,上面的方程便改写为:在这里,每个分子的“占有体积” v {displaystyle v} 被所谓“排斥体积” v − b {displaystyle v-b} 代替,反映了分子在空间中不能重叠。若气体被压缩至体积接近分子体积之和(即分子间空隙 v − b {displaystyle v-b} 趋向于0),那么其压强将趋于无穷大。下一步,我们考虑原子对之间的引力。引力的存在会使分子的平均亥姆霍兹自由能下降,减少量正比于流体的密度。但压强的大小满足热力学关系式中A* 为每个分子的亥姆霍兹自由能。由此得到,引力使压强减小的量正比于 1 v 2 {displaystyle {frac {1}{v^{2}}}} 。记该比例常数为 a {displaystyle a} ,可得这便是范氏方程。在气体压强不太高的情况下,以下事实成立:所以此时理想气体方程是范氏方程(也是对实际气体行为的)的一个良好近似。随着气体压力的增加,范氏方程和理想气体方程结果的差别会变得十分明显(左图为 CO 2 {displaystyle {ce {CO2}}} 分别用理想气体方程和范德华方程模拟的p-V等温线,温度70 °C):范氏方程适用于气体的液化过程。气体液化可能发生的最高温度称为临界温度,用 T C {displaystyle T_{C}} 表示:右图所示为用范氏方程模拟的 CO 2 {displaystyle {ce {CO2}}} 在不同温度下的p-V 等温线,从中可以明显看出范氏方程对液化过程的模拟(注意:若用理想气体状态方程作上述模拟,得到的只是一系列双曲线,因为在等温条件下理想气体状态方程就退化为玻意耳-马略特定律——pV=常数)。 CO 2 {displaystyle {ce {CO2}}} 气体的临界温度为 T C = 31 {displaystyle T_{C}=31} °C = 304 {displaystyle =304} K。气体的临界状态参量 V C {displaystyle V_{C}} 、 p C {displaystyle p_{C}} 、 T C {displaystyle T_{C}} 和范德华常数 a {displaystyle a} 、 b {displaystyle b} 之间存在下列数学关系:我们可以利用这些关系通过测出气体的 T C {displaystyle T_{C}} 和对应的 p C {displaystyle p_{C}} 来得到 a {displaystyle a} 和 b {displaystyle b} 的值(由于测量上的困难,一般不使用 V C {displaystyle V_{C}} )。下面,我们不再考虑 v = V N {displaystyle v={frac {V}{N}}} ( N {displaystyle N} 为系统中的分子数),改为考虑总体体积 V {displaystyle V} 。状态方程并不能告诉我们系统的所有热力学参量。我们可以照搬上面推导范氏方程的思路,从理想气体的亥姆霍兹自由能表达式出发,推得下面的结论:式中 A {displaystyle A} 为亥姆霍兹自由能, c ^ v {displaystyle {hat {c}}_{v}} 是无量纲的定容热容, Φ {displaystyle Phi } 是待定的熵常数。上述方程将 A {displaystyle A} 用它的自然变量 V {displaystyle V} 和 T {displaystyle T} 表示,所以系统的所有热力学信息已全部知道。其力学状态方程就是前面导出的范氏方程系统的熵( S {displaystyle S} )由下式决定综合 A {displaystyle A} 和 S {displaystyle S} 的表达式,可由定义得到系统内能其他热力学势和化学势也可用类似的方程给出,但任何势函数若要用压强 P {displaystyle P} 表示都需要求解一个三阶多项式,使结果的形式变得很繁杂。所以,将焓和吉布斯能用它们相应的自然变量表示的结果都是复杂的(因为 P {displaystyle P} 是它们的自然变量之一)。虽然在一般形式的范氏方程中,常数 a {displaystyle a} 和 b {displaystyle b} 因气体/流体种类而异,但我们可以通过改变方程的形式,得到一种适用于所有气体/流体的普适形式。按照下面的方式定义约减变量(亦称折合变量,就是把变量转换成其无量纲形式),其中下标 R {displaystyle R} 表示约减变量,下标 C {displaystyle C} 表示原变量的临界值:式中 p C = a 27 b 2 {displaystyle p_{C}={frac {a}{27b^{2}}}} , v C = 3 b {displaystyle displaystyle {v_{C}=3b}} , k T C = 8 a 27 b {displaystyle kT_{C}={frac {8a}{27b}}} 。用约减变量代替原变量,范氏方程形式变为这就是范氏方程的不变形式,即这一形式不会因应用流体种类改变而改变。上述方程的不变性质亦称对应状态原理。在流体力学中,范氏方程可以作为可压缩流体(如液态高分子材料)的PVT状态方程。这种情况下,由于比容 V {displaystyle V} 变化不大,可将方程简化为:( p + A ) ( V − B ) = C T {displaystyle (p+A)(V-B)=CT,} ,其中 p {displaystyle p} 为压强, V {displaystyle V} 为比容, T {displaystyle T} 为温度, A {displaystyle A} 、 B {displaystyle B} 、 C {displaystyle C} 均为与对象相关的参数。

相关

  • 连接蛋白结构 / ECOD连接蛋白(Connexin,Cx)。在脊椎动物,由connexin组成的间隙连接通道(Gap Junction channel)介导相邻细胞之间离子、小分子营养物质交换及信号分子传播。哺乳动物发育早
  • 发炎炎症反应、炎性反应,俗称炎症,是指具有血管系统的活体组织对致炎因子及局部损伤所发生的防御性为主的反应,中心环节是血管反应,是生物组织受到外伤、出血或病原感染等刺激,激发的
  • 无法理解别人的话感觉性失语症 ,又被称为韦尼克氏失语症 , 流畅失语症 ,或接受性失语症。此类患者有语言理解障碍,患者的阅读能力或了解他人谈话内容的能力低下。虽然患者能够说初具语法、速
  • 炸药爆炸物是在一定的外界能量的作用下,由自身能量发生爆炸的物质。一般情况下,炸药的化学及物理性质稳定,但不论环境是否密封,药量多少,甚至在外界零供氧的情况下,只要有较强的能量(包
  • 威廉·惠利特威廉·雷丁顿·惠利特(英语:William Redington Hewlett,1913年5月20日-2001年1月12日),小名比尔·惠利特(Bill Hewlett),美国电机工程师与企业家,与大卫·普克德(David Packard)共同创办
  • 森永牛奶砷中毒事件森永牛奶砷中毒事件(日语:森永ヒ素ミルク中毒事件)是1955年(昭和30年)六月时以西日本为主的食物中毒事件。受害的婴幼儿在喝了森永乳业(日语:森永乳業)的奶粉后产生死亡以及其他食物
  • 2002年韩日世界杯2002年国际足联世界杯(英语:2002 FIFA World Cup Korea/Japan),于2002年5月31日至6月30日在大韩民国和日本举行。这是历史上首次由两个国家联合举办的国际足联世界杯,亦是首次在
  • Corey-Fuchs反应Corey–Fuchs反应,又称Ramirez–Corey–Fuchs反应醛与四溴化碳和三苯基膦反应,发生一碳同系化生成二溴烯烃,然后再用正丁基锂处理而得到末端炔烃。反应由美国化学家 E. J. Core
  • 天蝎座天蝎座(拉丁语:Scorpius,天文符号:♏),是一个位于南天球的黄道带星座之一,面积496.78平方度,占全天面积的1.204%,在全天88个星座中,面积排行第三十三。每年6月3日子夜天蝎座中心经过上
  • 天然气这个条目包括一个各国天然气储备量、产量、消费量、进口量和出口量的表格。属地、未得到广泛承认的国家和超国家实体没有进行排名。默认的国家排名是按照探明的天然气储量来