格拉斯曼流形

✍ dations ◷ 2025-04-04 20:55:05 #微分几何,射影几何,代数齐性空间,代数几何

在数学中,格拉斯曼流形是一个向量空间 的给定维数的所有线性子空间。例如,格拉斯曼流形 1() 是 中过原点直线的空间,从而与射影空间 P 相同。格拉斯曼流形以赫尔曼·格拉斯曼命名。

通过给定子空间一个拓扑结构可以谈论子空间的一个连续选取或子空间集合的一个开集或闭集;通过给它们一个微分流形结构可以考虑子空间的光滑选取。

一个自然的例子来自嵌入在欧几里得空间中光滑流形的切丛。假设我们有一个 维流形 嵌入在 R n {\displaystyle \mathbb {R} ^{n}} 中的每一点 , 的切丛可以视为 R n {\displaystyle \mathbb {R} ^{n}} 分配为它切空间定义了一个 到 () 的映射。(为此我们需要平移 在 处的切空间到原点,从而定义了一个 -维向量子空间。这种想法非常类似于三维空间中曲面的高斯映射)。

这种想法广泛地说可以推广到一个流形 所有向量丛,这样每个向量丛产生一个从 到一个合适的一般化格拉斯曼流形的连续映射——但是为此我们须证明不同的嵌入定理。我们然后发现我们的向量丛的性质与对应的映射视为连续映射的性质有关。特别的我们发现,具有同伦的映射的向量丛是同构的。但是同伦的定义依赖于一个连续的概念,从而一个拓扑。

最简单的非射影空间格拉斯曼流形是 G r 2 ( 4 ) {\displaystyle \mathrm {Gr} _{2}(4)} 维空间中的 平面。

当 = 2 时,格拉斯曼流形是所有过原点平面的空间。在三维欧几里得空间,一个平面完全由其一条垂线确定(反之亦然);从而 2(3) 同构于 1(3)(两者都同构于实射影平面)。

设 是域 上有限维向量空间。格拉斯曼流形 r() 是 的所有 -维线性子空间。它也记做 r(), (, ) 或 (, )。如果 的维数为 ,则格拉斯曼流形也记做 (, ) 或 (, )。

的向量子空间等价于射影空间 P 的线性子空间,故等价地可将格拉斯曼流形视为 P 的线性子空间之集合。当格拉斯曼流形看成这样时,经常记做 Grr−1(P),Gr−1(P),Gr(r−1, n−1) 或 G(r−1, n−1)。

给格拉斯曼流形一个几何结构最快的方法是将其表述为一个齐性空间。首先,注意到一般线性群 ()传递作用于 的 -维子空间上。从而,如果 是这个作用的稳定子,我们有:

如果底域是 R 或 C 且将 () 视为一个李群,则这个构造将格拉斯曼流形变为一个光滑流形。也可以利用其它群来构造。为此,取定一个 上的内积。在 R 上我们将 () 换成正交群 (),通过限制到正交标架,我们有等式

在 C 上,我们将 () 换为酉群 ()。这说明格拉斯曼流形是紧致的。这些构造也使格拉斯曼流形成为一个度量空间:对 的一个子空间 ,令 W 是 到 的投影。则

r() 上一个度量,这里 {\displaystyle \lVert \cdot \rVert } 任意且将 () 视为一个代数群,则这种构造说明格拉斯曼是一个非奇异代数簇。还可以证明 是一个抛物型子群(英语:parabolic subgroup),由此得出 r() 完备。

普吕克嵌入是格拉斯曼流形到一个射影空间的自然嵌入:

假设 是 的一个 -维子空间 。为了定义 ψ(),取 的一组基 1, ..., r,然后设 ψ() 是这些基元素的楔积:

的一组不同基给出不同的楔积,但两个积只差一个非零数量(基变换矩阵的行列式)。因为右边取值于一个射影空间,ψ 是良定义的。为了说明 ψ 是一个嵌入,注意到可由 ψ() 重新得到 , 是所有向量 使得 ∧ ψ() = 0。

格拉斯曼的这个嵌入满足一些非常简单的二次多项式称为普吕克关系。这说明了格拉斯曼流形作为一个一个代数子簇嵌入 P(∧r),这也给出构造格拉斯曼流形的另一个方法。为了表述普吕克关系,取 的两个 -维子空间 和 ,它们的基分别为 1, ..., r1, ..., r。那么对任何整数 k ≥ 0,如下等式在 P(∧r) 的齐次坐标环中成立:

的每个 -维子空间 确定了 的一个 --维商空间 /,这可写成短正合序列:

取这三个空间的对偶以及线性变换得出 (/)* 在 * 中的包含,其商为 *:

利用有限维向量空间与二次对偶的自然同构,说明再取一次对偶得到了原来的短正合序列。从而 的 -维子空间与 * 的 --维子空间存在一一对应。用格拉斯曼流形表示,这是典范同构

取 与 * 的一个同构确定了 r() 与 n−r() 的一个(非典范)同构。这个同构将一个 -维子空间变为它的−-维正交补。

格拉斯曼流形的一个详细研究将其分解为叫做舒伯特胞腔的子集,最先应用于(计数几何(英语:enumerative geometry)。() 的舒伯特胞腔是用一个辅助性的旗(英语:flag (linear algebra))定义:取子空间 V1, V2, ..., V,使得 V 包含于 V+1。然后,对 = 1 到 ,我们考虑 () 相应的子空间,由与 V 的交的维数至少为 的 组成。舒伯特胞腔的操作是舒伯特分析(英语:Schubert calculus)。

这里是这种技术的一个例子。考虑确定 χ ( G n , r ) {\displaystyle \chi (G_{n,r})} -维子空间的格拉斯曼流形。取定 R n {\displaystyle \mathbb {R} ^{n}} -维子空间是否包含 R {\displaystyle R} -维向量丛。这样给出递归公式:

这里令 χ G n , 0 = χ G n , n = 1 {\displaystyle \chi G_{n,0}=\chi G_{n,n}=1} 是一个 -维欧几里得空间,我们可以在 G n , r {\displaystyle G_{n,r}} 上定义一个一致测度。设 θ n {\displaystyle \theta _{n}} 是正交群 O ( n ) {\displaystyle O(n)} 上的单位哈尔测度并取定 V G n , r {\displaystyle V\in G_{n,r}} 。则对一个集合 A G n , r {\displaystyle A\subseteq G_{n,r}} ,定义

这个测度在群 O ( n ) {\displaystyle O(n)} 的作用下不变,即 γ n , r ( g A ) = γ n , r ( A ) {\displaystyle \gamma _{n,r}(gA)=\gamma _{n,r}(A)} 对所有 g O ( n ) {\displaystyle g\in O(n)} 成立。因为 θ n ( O ( n ) ) = 1 {\displaystyle \theta _{n}(O(n))=1} ,我们有 γ n , r ( G n , r ) = 1 {\displaystyle \gamma _{n,r}(G_{n,r})=1} 。另外 γ n , r {\displaystyle \gamma _{n,r}} 关于度量空间拓扑是一个拉东测度(Radon measure),且每个相同半径(关于这个度量)的球有相同的测度——在此意义下该测度是一致的。

相关

  • 局灶节段性肾小球硬化症局灶节段性肾小球硬化症(focal segmental glomerulosclerosis、FSGS、局灶节段性肾丝球硬化症)是小孩和青少年肾病综合征的原因,以及成年人肾功能衰竭的重要原因。 它也被称为"
  • 生态负债日地球超载日(英语:Earth Overshoot Day,EOD),之前被称为是生态负债日(英语:Ecological Debt Day,EDD),指每年地球进入了生态赤字状态的日子,即是全球的生态足迹超越了地球可用的生物承载
  • 便当盒饭是指使用盒子盛装饭菜或面条等各种食物以便于携带的盒装餐食,主要流行于亚洲以稻米作为主食的地区。“便当”一词最早源于南宋时期的俗语,意思是“便利的东西、方便、顺利
  • ICD-9以下是国际疾病与相关健康问题统计分类(ICD)第九版的编码列表:
  • 非洲人国民大会非洲人国民大会(英语:African National Congress),简称非国大(ANC),是南非目前最大的政党。1994年5月起,该党与南非共产党及南非工会大会组成的执政联盟“三方联盟”一直掌握全国政
  • 黍鲱黍鲱为辐鳍鱼纲鲱形目鲱科的其中一种,分布于东大西洋区,包括北海、波罗的海、地中海、黑海及亚速海海域,栖息深度10-150米,体长可达16公分,栖息在沿海、河口区,为回游性鱼类,以浮游
  • 原曹洞宗大本山台湾别院钟楼坐标:25°02′22″N 121°31′19″E / 25.03937°N 121.521889°E / 25.03937; 121.521889曹洞宗大本山台湾别院钟楼,为台湾台北市市定古迹,状似城门,为东和禅寺的入口。钟楼位
  • 乔治·埃夫斯塔希欧乔治·佩特罗斯·艾夫斯塔希欧,FRS (英语:George Petros Efstathiou,/ɛfˈstæθjuː/,1955年9月2日-),希腊裔英国宇宙学家,剑桥大学天体物理学教授。他曾担任过牛津大学的萨维尔天
  • 陆锦陆锦(1879年-1946年) ,字绣山(一作秀山),堂号锦光堂,天津人,祖籍浙江绍兴。陆锦于1897年进入北洋武备学堂幼年班。1899年(光绪25年)到日本留学。毕业于陆军士官学校第1期炮兵科。1903年
  • 赫利奥克勒斯一世赫利奥克勒斯(公正者)(希腊语:Ηλιοκλεους, Δίκαιος )最后一位希腊-巴克特里亚国王。统治期间约为公元前145年到公元前130年间,可能是欧克拉提德一世的儿子或兄弟