首页 >
四角化立方体
✍ dations ◷ 2025-11-07 18:21:21 #四角化立方体
在几何学中,四角化立方体又称为四角化六面体是一种卡塔兰立体,其对偶多面体为截角正八面体,由24个全等的等腰三角形组成,具有36条边和14个顶点,可以视为在正方体的每个面上加入正四角锥的结果。此外四角化立方体亦可以视为正方形四边各加一个等腰三角形拼成的正八边形在立体几何中的推广。四角化立方体是一个卡塔兰立体,由24个面、36条边和14个顶点组成,其中24面为24个全等的等腰三角形,是一种二十四面体,其对偶多面体为截角八面体。在四角化立方体的14个顶点中,有6个顶点是4个等腰三角形的公共顶点,对应的顶角是四面角;另外8个顶点是6个等腰三角形的公共顶点,对应的顶角是六面角。此外四角化立方体可以视为在正方体的每个面上加入适当锥高的正四角锥的结果,其加入的正四角锥锥高不能高过原本的正方体表面到其外接球的距离,为四分之一倍的立方体边长,若超过则会变成菱形十二面体或星形的四角化立方体。此外,立方体、八面体和星形八面体都可以以顶点共用的方式,内接在四角化立方体内。若四角化立方体的最短的边长为a,则其表面积A及体积V为:若其对偶多面体的截角正八面体边长为a,则对应的四角化立方体之体积V为:四角化立方体由24个全等的等腰三角形组成。组成四角化立方体的等腰三角形的2个底角为arccos
(
2
3
)
{displaystyle scriptstyle {left({tfrac {2}{3}}right)}}
约为48.19°,由三角形内角关系可知顶角约为83.62°,边长比为1:1:
4
3
{displaystyle {begin{matrix}{frac {4}{3}}end{matrix}}}
。若一个四角化立方体对应的对偶多面体边长为单位长(对应的四角化立方体最短边长为
9
2
8
{displaystyle {tfrac {9{sqrt {2}}}{8}}}
单位)且几何中心位于原点,则其顶点坐标为:四角化立方体具有Td, (*332)的四面体群对称性(英语:tetrahedral symmetry),其24个等腰三角形代表四面体对称的24个基本域。
在球面上,四角化立方体可以透过6个球面大圆来构建。相同的结构也可以透过将立方体在每个正方形面上以正方形的几何中心为基准将正方形分成四个三角形、或透过将正四面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形来看出。四角化立方体可以投影到球面上,形成球面多面体。在球极平面投影中,四角化立方体的棱可以在平面上形成6个圆或中心径向线,每个圆或中心径向线皆代表四面体群对称性的镜射线。这6个圆可以分成3组每两两一对的正交圆,这三组正交圆,每组在球面上皆可以视为1个正四面形。四角化立方体有三种高对称性的正交投影,分别为两种在顶点上的正交投影以及一种在棱上中点的正交投影。 后两者的对偶图其对称性对应于B2和A2的考克斯特平面(英语:Coxeter plane)。在矿物学中,这种形状又称为四六面体(英语:tetrahexahedron),部分的矿石可以结晶成这种形状,例如部分的钙铁榴石,以及能在部分的铜和氟的结晶系统中被观测到。此外,亦有部分24个面的多面体骰子被设计为四角化立方体的外型。四角化立方体可以经由八面体的对偶多面体——立方体透过四角化变换构造,即将立方体每个面贴上正四角锥来获得。其他也是由正八面体或其对偶多面体透过康威变换得到的多面体有:四角化立方体是由等腰三角形组成,且对偶多面体由正方形与正六边形组成。同样由等腰三角形组成,且对偶多面体由正多边形与正六边形组成的多面体或镶嵌图包括:四角化立方体的对偶复合体,为四角化立方体和截角八面体组合成的复合图形,称为复合截角八面体四角化立方体。其共有38个面、72条边和38个顶点,其尤拉示性数为4,亏格为-1。在图论的数学领域中,与四角化立方体相关的图为四角化立方体图(Disdyakis Dodecahedral Graph),是四角化立方体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化立方体图有36条边和14个顶点,其中度为4的顶点有6个、度为6的顶点有8个。其特征多项式为:
相关
- 磺胺甲磺胺甲
- 一水合氨氨水指氨气的水溶液,可写作NH3 (aq)、NH4OH或NH3·H2O。它是有强烈刺鼻气味、具弱碱性的液体。氨水中,氨气分子发生微弱水解生成氢氧根离子及铵根离子。“氢氧化铵”事实上并
- 圣母升天日圣母升天节纪念于每年的8月15日,在厄弗所大公会议基于肯定耶稣是真天主又是真人,宣认玛利亚为天主之母的信理。此后圣母敬礼便在各地蓬勃发展起来。至教宗本笃十四世,宣布玛利
- 中央邦中央邦(印地语:मध्य प्रदेश,拉丁字母转写:Madhya Pradesh)。印度中部的一邦。在德干高原与恒河平原之间。首府博帕尔。邦境内有数条河流流经。16-17世纪时由贡德人统治
- 良性乳房疾病女性乳腺小叶增生从青年到中年均可发生,非常普遍。发病初期有乳房痛,出现肿块等,如不注意治疗有可最终发展为乳腺癌。预防此情况发生应在生活上应少摄入激素,例如少食用煎炸食品
- 统计学家以下列出了统计学家,或对统计学理论、概率论、信息论或机器学习、人工智能等相关领域作出过突出贡献的人。
- 甲基丙二酸单酰辅酶A甲基丙二酸单酰辅酶A (或简称甲基丙二酰辅酶A)是由辅酶A与甲基丙二酸通过硫酯键结合的重要代谢中间产物,参与许多生物合成与分解反应。丙酰辅酶A由丙酰辅酶A羧化酶羧化为甲基丙
- 国榷《国榷》为记载明朝历史的编年体史书。明末诸生海宁谈迁撰。全书正文104卷,卷首4卷。约428万余字。由于《国榷》当时未曾刊行,没有经过四库馆臣删改,史料价值很高。天启元年(162
- 湖岩奖湖岩奖是一个每年颁发一次的韩国奖项,授予“国内外对科学文化的发展做出卓越贡献、并增进人类福利的韩民族人士”,1991年首次授奖。该奖由三星集团创立,以其前总裁李秉喆的笔名
- 二条御所元离宫二条城(日语:にじょうじょう)是一座位于日本京都府京都市中京区二条城町的城堡,始建于江户时代初期庆长八年(1603年)。是江户幕府第一代征夷大将军德川家康作为守护京都御所
