四角化立方体

✍ dations ◷ 2025-04-25 10:06:11 #四角化立方体
在几何学中,四角化立方体又称为四角化六面体是一种卡塔兰立体,其对偶多面体为截角正八面体,由24个全等的等腰三角形组成,具有36条边和14个顶点,可以视为在正方体的每个面上加入正四角锥的结果。此外四角化立方体亦可以视为正方形四边各加一个等腰三角形拼成的正八边形在立体几何中的推广。四角化立方体是一个卡塔兰立体,由24个面、36条边和14个顶点组成,其中24面为24个全等的等腰三角形,是一种二十四面体,其对偶多面体为截角八面体。在四角化立方体的14个顶点中,有6个顶点是4个等腰三角形的公共顶点,对应的顶角是四面角;另外8个顶点是6个等腰三角形的公共顶点,对应的顶角是六面角。此外四角化立方体可以视为在正方体的每个面上加入适当锥高的正四角锥的结果,其加入的正四角锥锥高不能高过原本的正方体表面到其外接球的距离,为四分之一倍的立方体边长,若超过则会变成菱形十二面体或星形的四角化立方体。此外,立方体、八面体和星形八面体都可以以顶点共用的方式,内接在四角化立方体内。若四角化立方体的最短的边长为a,则其表面积A及体积V为:若其对偶多面体的截角正八面体边长为a,则对应的四角化立方体之体积V为:四角化立方体由24个全等的等腰三角形组成。组成四角化立方体的等腰三角形的2个底角为arccos ( 2 3 ) {displaystyle scriptstyle {left({tfrac {2}{3}}right)}} 约为48.19°,由三角形内角关系可知顶角约为83.62°,边长比为1:1: 4 3 {displaystyle {begin{matrix}{frac {4}{3}}end{matrix}}} 。若一个四角化立方体对应的对偶多面体边长为单位长(对应的四角化立方体最短边长为 9 2 8 {displaystyle {tfrac {9{sqrt {2}}}{8}}} 单位)且几何中心位于原点,则其顶点坐标为:四角化立方体具有Td, (*332)的四面体群对称性(英语:tetrahedral symmetry),其24个等腰三角形代表四面体对称的24个基本域。 在球面上,四角化立方体可以透过6个球面大圆来构建。相同的结构也可以透过将立方体在每个正方形面上以正方形的几何中心为基准将正方形分成四个三角形、或透过将正四面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形来看出。四角化立方体可以投影到球面上,形成球面多面体。在球极平面投影中,四角化立方体的棱可以在平面上形成6个圆或中心径向线,每个圆或中心径向线皆代表四面体群对称性的镜射线。这6个圆可以分成3组每两两一对的正交圆,这三组正交圆,每组在球面上皆可以视为1个正四面形。四角化立方体有三种高对称性的正交投影,分别为两种在顶点上的正交投影以及一种在棱上中点的正交投影。 后两者的对偶图其对称性对应于B2和A2的考克斯特平面(英语:Coxeter plane)。在矿物学中,这种形状又称为四六面体(英语:tetrahexahedron),部分的矿石可以结晶成这种形状,例如部分的钙铁榴石,以及能在部分的铜和氟的结晶系统中被观测到。此外,亦有部分24个面的多面体骰子被设计为四角化立方体的外型。四角化立方体可以经由八面体的对偶多面体——立方体透过四角化变换构造,即将立方体每个面贴上正四角锥来获得。其他也是由正八面体或其对偶多面体透过康威变换得到的多面体有:四角化立方体是由等腰三角形组成,且对偶多面体由正方形与正六边形组成。同样由等腰三角形组成,且对偶多面体由正多边形与正六边形组成的多面体或镶嵌图包括:四角化立方体的对偶复合体,为四角化立方体和截角八面体组合成的复合图形,称为复合截角八面体四角化立方体。其共有38个面、72条边和38个顶点,其尤拉示性数为4,亏格为-1。在图论的数学领域中,与四角化立方体相关的图为四角化立方体图(Disdyakis Dodecahedral Graph),是四角化立方体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化立方体图有36条边和14个顶点,其中度为4的顶点有6个、度为6的顶点有8个。其特征多项式为:

相关

  • 毛细胞毛细胞是所有的脊椎动物中听觉系统和平衡系统的感觉接收器。在哺乳动物中,听觉毛细胞位于内耳耳蜗的基底膜上的柯蒂氏器上。它名字的由来是从细胞的顶端长出的一束硬纤毛。也
  • 早衰症早年衰老症候群(Hutchinson-Gilford Progeria syndrome),简称早衰症。早衰症是一种极端罕见的先天遗传性疾病,其患者身体的老化过程十分快速。而罹患此病孩童的年龄很少超过13岁
  • Woodrow Wilson托马斯·伍德罗·威尔逊(英语:Thomas Woodrow Wilson,1856年12月28日-1924年2月3日),美国第28任总统。此前,他曾先后任普林斯顿大学校长,新泽西州州长等职。作为进步主义时代的一个
  • 莫尔浩司学院坐标:33°44′48″N 84°24′55″W / 33.74667°N 84.41528°W / 33.74667; -84.41528莫尔豪斯学院(英语:Morehouse College)是一个位于美国乔治亚州亚特兰大的私立文理学院、男
  • 马尼拉纸马尼拉纸是一种相对便宜的纸,与其他纸相比,它经过更少的提炼过程。大部分马尼拉纸由经过半漂白的木浆制成。相对于牛皮纸,它的强度较低但有更好的印刷质量。马尼拉纸通常是米黄
  • 奇蹄目 Perissodactyla奇蹄目(学名:Perissodactyla)是哺乳动物中的一个目,包括有奇数脚趾的动物。原始奇蹄动物前足四趾,后足三趾,现生的奇蹄动物貘就是这样的脚趾结构。草食,胃的构造和偶蹄目部分成员多
  • 椎间盘炎椎间盘炎(英语:discitis或英语:diskitis)泛指发生在椎间盘的感染,在所有年龄层皆可能发病。在成人,可能造成严重后果,如败血症或脊椎硬脑膜外脓肿(英语:epidural abscess),但也可能不药
  • 七氯七氯(Heptachlor)又称七氯化茚,是一种有机氯化合物,六氯环戊二烯类杀虫剂。七氯通常为白色晶体或茶褐色蜡状固体,带有樟脑或雪松的气味。其化学结构稳定,不易分解和降解,会在环境里
  • 潜水钟与蝴蝶《潜水钟与蝴蝶》(Le Scaphandre et le Papillon)是由法国《ELLE杂志》总编辑让-多米尼克·鲍比罹患闭锁症候群后所作的传记,书中描述他在严重中风并罹患闭锁症候群后的生活以
  • 阿黛尔的生活《阿黛尔的生活》(法语:La vie d'Adèle – Chapitres 1 & 2,英语:Blue is the Warmest Color) 是一部2013年法国电影,导演为阿布戴·柯西胥。根据Julie Maroh所著的法国绘画小说