首页 >
四角化立方体
✍ dations ◷ 2025-04-02 08:45:49 #四角化立方体
在几何学中,四角化立方体又称为四角化六面体是一种卡塔兰立体,其对偶多面体为截角正八面体,由24个全等的等腰三角形组成,具有36条边和14个顶点,可以视为在正方体的每个面上加入正四角锥的结果。此外四角化立方体亦可以视为正方形四边各加一个等腰三角形拼成的正八边形在立体几何中的推广。四角化立方体是一个卡塔兰立体,由24个面、36条边和14个顶点组成,其中24面为24个全等的等腰三角形,是一种二十四面体,其对偶多面体为截角八面体。在四角化立方体的14个顶点中,有6个顶点是4个等腰三角形的公共顶点,对应的顶角是四面角;另外8个顶点是6个等腰三角形的公共顶点,对应的顶角是六面角。此外四角化立方体可以视为在正方体的每个面上加入适当锥高的正四角锥的结果,其加入的正四角锥锥高不能高过原本的正方体表面到其外接球的距离,为四分之一倍的立方体边长,若超过则会变成菱形十二面体或星形的四角化立方体。此外,立方体、八面体和星形八面体都可以以顶点共用的方式,内接在四角化立方体内。若四角化立方体的最短的边长为a,则其表面积A及体积V为:若其对偶多面体的截角正八面体边长为a,则对应的四角化立方体之体积V为:四角化立方体由24个全等的等腰三角形组成。组成四角化立方体的等腰三角形的2个底角为arccos
(
2
3
)
{displaystyle scriptstyle {left({tfrac {2}{3}}right)}}
约为48.19°,由三角形内角关系可知顶角约为83.62°,边长比为1:1:
4
3
{displaystyle {begin{matrix}{frac {4}{3}}end{matrix}}}
。若一个四角化立方体对应的对偶多面体边长为单位长(对应的四角化立方体最短边长为
9
2
8
{displaystyle {tfrac {9{sqrt {2}}}{8}}}
单位)且几何中心位于原点,则其顶点坐标为:四角化立方体具有Td, (*332)的四面体群对称性(英语:tetrahedral symmetry),其24个等腰三角形代表四面体对称的24个基本域。
在球面上,四角化立方体可以透过6个球面大圆来构建。相同的结构也可以透过将立方体在每个正方形面上以正方形的几何中心为基准将正方形分成四个三角形、或透过将正四面体在每个三角形面上以正三角形的顶点、边中点和几何中心为基准将正三角形分成6个三角形来看出。四角化立方体可以投影到球面上,形成球面多面体。在球极平面投影中,四角化立方体的棱可以在平面上形成6个圆或中心径向线,每个圆或中心径向线皆代表四面体群对称性的镜射线。这6个圆可以分成3组每两两一对的正交圆,这三组正交圆,每组在球面上皆可以视为1个正四面形。四角化立方体有三种高对称性的正交投影,分别为两种在顶点上的正交投影以及一种在棱上中点的正交投影。 后两者的对偶图其对称性对应于B2和A2的考克斯特平面(英语:Coxeter plane)。在矿物学中,这种形状又称为四六面体(英语:tetrahexahedron),部分的矿石可以结晶成这种形状,例如部分的钙铁榴石,以及能在部分的铜和氟的结晶系统中被观测到。此外,亦有部分24个面的多面体骰子被设计为四角化立方体的外型。四角化立方体可以经由八面体的对偶多面体——立方体透过四角化变换构造,即将立方体每个面贴上正四角锥来获得。其他也是由正八面体或其对偶多面体透过康威变换得到的多面体有:四角化立方体是由等腰三角形组成,且对偶多面体由正方形与正六边形组成。同样由等腰三角形组成,且对偶多面体由正多边形与正六边形组成的多面体或镶嵌图包括:四角化立方体的对偶复合体,为四角化立方体和截角八面体组合成的复合图形,称为复合截角八面体四角化立方体。其共有38个面、72条边和38个顶点,其尤拉示性数为4,亏格为-1。在图论的数学领域中,与四角化立方体相关的图为四角化立方体图(Disdyakis Dodecahedral Graph),是四角化立方体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。四角化立方体图有36条边和14个顶点,其中度为4的顶点有6个、度为6的顶点有8个。其特征多项式为:
相关
- 奥米加三ω−3脂肪酸(Omega-3 fatty acids)又称n−3脂肪酸,是一类不饱和脂肪酸,其中最重要的3种为:ALA(存在于植物中的油),EPA和DHA(这二种发现存在于海洋动植物油中)。从脂肪酸分子中距离羧基
- 角蛋白角蛋白是纤维结构蛋白家族之一。 它是构成头发,角,爪,蹄和人体皮肤外层的关键结构材料。 角蛋白也是保护上皮组织细胞免受损伤或压力的蛋白质。 角蛋白极不溶于水和有机溶剂。
- Erxleben约翰·克里斯蒂安·波利卡普·埃克斯勒本(德语:Johann Christian Polycarp Erxleben,1744年6月22日-1777年8月19日),于德国奎德林堡出生,是一名博物学家。他是格丁根大学物理系及兽
- 切腹切腹(日文:切腹/せっぷく Seppuku ?)是用胁差等刀切开腹部的自杀仪式,主要为日本武士所实行,日本文化中,将切腹视为有尊严的死法。近代除了自杀,也用在处刑。也称为腹切(腹切り/はら
- 刘慈欣刘慈欣(1963年6月23日-),生于北京,祖籍河南罗山,中国当代科幻作家,自上世纪80年代中期开始创作,1999年6月起在《科幻世界》杂志上发表多篇科幻小说和科幻随笔,并出版了多部长篇科幻小
- span class=nowrapXeClsub4/sub/span四氯化氙是一种不稳定的氙化合物,化学式为XeCl4。它很不稳定,不能在室温下稳定存在,也不能通过化学方法合成,只能通过含放射性129I的KICl4经β衰变得到,因此获得的量很少。它的空
- 查理兹·塞隆查理兹·塞隆(英语:Charlize Theron,/ʃɑːrˈliːz ˈθɛrən/ shar-LEEZ THERR-ən; 南非语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libert
- 金门方言金门方言是勉语的一种,属于苗瑶语系瑶语支。说金门方言的人自称“金门”等,共有40万人,其中中国多于22万,越南17万。毛宗武(2004)把国内的金门方言划分为两个土语:过去曾经把勉方言
- 蛇蝎美人致命女郎(法语:femme fatale、国际音标:)是文学上用来分类以自身的魅力诱使目标(多数是男人)沉溺的女性,而为之倾倒的人多数是下场悲惨如失去社会地位、家庭、政权甚至是自己的性命
- 气味色情气味色情(英语:olfactophilia或osmolagnia)一种对于身体(特别是与性有关的部位)散发的气味的性欲倒错,或指由其产生的性刺激。 词源:olfactophilia(拉丁文=olfacto,闻,与嗅觉相关,希腊