自转

✍ dations ◷ 2025-08-29 03:09:55 #自转
转动,是指物件旋转的运动。三维物件绕着旋转的轴称为转动轴或旋转轴,若旋转轴通过物体的质心,则称此物体在自转,而此轴称为自转轴。恒星和行星都会自转,小天体亦大多会自转。作为天体的集合体,星系也会自转。如果行星自转轴在长期运动中渐渐偏离原有方向,即会产生岁差。在三维的空间中,转动以物体绕着转动轴作旋转表示。假若此物体的转动轴是在物体的内部,则此物体绕自己旋转;这就表示其角动量的值会受其相对速度或是此物体是否为不受力的自由运动而决定。转动为保持固定绕一点旋转的刚体运动,不同于移动。这一定义可应用在两维及三维空间(平面和空间上的分别)。三维空间的旋转为保持在固定的一条线作旋转,即三维空间的转动是绕一个轴旋转。此从欧拉旋转定理而来。所有的刚体旋转运动其运动状态可能是转动、移动、或转动加移动所造成。转动简单说为一对于共同点的径向渐进运动,其共同点位于运动转轴上,转轴与运动平面之间夹90度角互相垂直。若转轴位于物体自身外则称为轨道运动,例如:地球相对于太阳的公转。转动和轨道运动或者是自转主要的差异仅为转轴位于物体自身的内或外。而此差异可以在讨论刚体时说明。若此转动为两个围绕相同的点/轴的转动的第三个转动结果,则此逆向转动的结果也是相同。因此,上述一系列的转动,在数学上称作“群”。然而,绕旋转点/轴和绕另一个点或轴转动可能会导致其他的旋转,例如移动。惯性坐标的转动为沿着x、y和z轴的旋转运动。在空间中转动的结果可利用绕x轴、y轴及z轴旋转来表示,这就是说,任何空间的旋转运动可以分解成各个分量旋转运动之结合。在飞行动力学上,转动的坐标轴为偏航、俯仰和滚动(称为Tait-Bryan angles)。这些坐标轴也用于电脑绘图。在天文学中,转动是一种普遍观察到的现象。恒星、行星和类似星体皆绕着自转轴旋转,第一次测得太阳系中的行星旋转速率是以视觉特征量测得到。而星体的转动主要是以都普勒频移或观察表面活动特征方式量测。在地球的参考坐标中,这种转动产生的离心加速度会些微的抵销重力,所产生的影响之一是物体在赤道的重量会稍微少一点,另一个则是地球会略微变成一个椭圆球体。行星的旋转所造成的另一效应为进动现象,如同陀螺仪一般,行星自转轴会有些微的摆动,但要千年才能观察到此角度变化,而目前地球自转轴与其轨道平面(黄道面)的夹角为23.45度。许多领域里,转动(公转)常当作旋转的同义词,特别是天文学以及相关领域。为了更清楚的描述一物体绕着另一物体旋转而以公转一词称轨道公转,而自转则指绕某一特定轴旋转。卫星绕行星公转,行星绕恒星公转(如地球绕太阳),恒星缓慢的绕着星系中心公转,而星系的运动相当复杂,但其都包含公转分量。转动简单说为一对于共同点的径向渐进运动,其共同点位于运动转轴上,转轴与运动平面之间夹90度角互相垂直。若转轴位于物体自身外,则称为轨道运动。转动和轨道运动或者是自转,丝毫没有差异,主要的差异仅为转轴位于物体自身的内或外。而此差异可以在讨论刚体时说明。我们的太阳系中多数行星包括地球,绕太阳运动时自转方向皆与公转方向相同,但金星和天王星例外,目前的推测是天王星一开始的自转方向也与其他行星相同,但在宇宙早期遭到侧面的撞击而使自转轴翻转,而金星则被认为是缓慢的向后旋转(或上下倒置),另外矮行星冥王星(原被视为行星)则为不同于上述情形的异常情况。转动的速度以角频率(弧度/秒)或频率(转 /秒,转 /分),或周期(秒,天,等...)来表示。角频率的时间变化率是角加速度(弧度/秒²),此变化为扭矩所造成。扭矩与角加速度的比值为转动惯量。 角速度矢量同时也能描述旋转轴的方向。同样地扭矩也是以矢量表示。根据右手定则,角动量的方向指向观察者则角速度方向为逆时针,反之则为顺时针,例如:螺旋运动。转动简单说为一对于共同点的径向渐进运动,其共同点位于运动转轴上,转轴与运动平面之间夹90度角互相垂直。若转轴位于物体自身外,则称为轨道运动。转动和轨道运动或者是自转,丝毫没有差异,主要的差异仅为转轴位于物体自身的内或外。而此差异可以在讨论刚体时说明。在飞行动力学,转动的坐标轴为俯仰,滚转和偏航。转动一词也用于航空提及向上飞行(鼻翼向上移动)的飞机,特别是应用在开始起飞后爬升。许多娱乐设施的运行都是利用转动的原理。例如:摩天轮的中央有一个水平轴,平行轴两端的车厢转动方向相反。因为重力及机械力,所以在任何时间车厢所受的重力方向是与地面垂直,故车厢不旋转,只是移动。而其运动的圆周轨迹可由切线平移矢量所描述。旋转木马提供了一个垂直的旋转轴。此游乐设施结合了许多不同木马各自的旋转轴。与旋转飞机有关的旋转,机械提供垂直轴,而对水平旋转轴是由于向心力所造成。在云宵飞车的横轴逆旋转是一个或多个完整的周期,而惯性使人保持在自己的座位。转动在许多运动中扮演重要的角色。网球中的上旋球和下旋球;台球的拉竿跟推竿;保龄球及棒球的曲球等。其中,乒乓球是让球员利用球拍撞击球进而旋转球。

相关

  • 剑桥大学剑桥大学(英语:University of Cambridge;勋衔:Cantab)为一所座落于英国剑桥郡剑桥市的研究型大学。它是英语世界中历史第二悠久的大学,也是世界现存第四古老的大学。剑桥大学的起
  • 侗水语支侗水语支是侗傣语系的一支,分布在中国的广西、贵州、海南省等省份,仫佬语在老挝亦有使用者。一共大约有200万人使用。传统上把侗水语支和泰语支分成一类,称为侗台语族。但Weera
  • 尿流率图尿路动力学(英文:Urodynamics),简单来说是指液体在尿道上的流动所涉及的事项。尿路动力学(在中国称:尿流动力学或尿动力学)一词其原意是指液体在尿道上的流动所涉及的事项1。但是,在
  • 动物哲学《动物哲学》(全称:Philosophie zoologique ou exposition des considérations relatives à l'histoire naturelle des animaux,意为:动物哲学:有关动物博物学思考的阐述),或译《
  • 鰕虎鱼详见内文虾虎鱼即指鱼类分类学虾虎鱼目中的虾虎鱼科(Gobiidae),又作鰕虎科。它是鱼类中最大的科之一,已知品种超过2000种。绝大多数体型细小,一般短于10厘米。世界上最短小的脊椎
  • 植物组织培养植物组织培养是一种将植物体的部分细胞或组织与母体分离,在适当的条件下加以培养,使它们能够生长、发育、分化与增殖的技术。原理是来自植物细胞的全能性分化能力,也就是植物体
  • 弗朗西斯·普朗克法兰西斯·尚·马塞尔·普朗克(法语:Francis Jean Marcel Poulenc,1899年1月7日-1963年1月30日),又译浦朗克。法国钢琴家、作曲家,六人团成员之一。1899年1月7日生于巴黎,5岁跟母亲
  • 教练教练是一种训练或发展的技术,教练者被称为“Coach”,协助学习者达成特殊的个人或专业目标。该学习者有时候又被称为“Coachee”。有时,“教练”也可被认为是一段两人间非正式的
  • 剥皮寮剥皮寮历史街区(今康定路173巷)位于台湾台北市万华区,北临老松国小,东至昆明街,南面广州街,西接康定路,为台北市今日硕果仅存的清代街道之一,台北市政府于2010年3月29日公告登录为历
  • 华尔街见闻华尔街见闻是中国内地一个财经网站,成立于2013年。尽管名称相似,但华尔街见闻与华尔街日报并没有关系。2019年6月,华尔街见闻涉嫌违反中华人民共和国网络安全法而被下架整改。