共变和反变

✍ dations ◷ 2025-07-15 06:37:04 #向量,张量,微分几何,黎曼几何,多重线性代数

在数学里,反变(contravariant,也称逆变)和共变(covariant,也称协变)描述一个向量(或更广义来说,张量)的坐标,在向量空间的基底/坐标系转换之下,会如何改变。

反变和共变在张量场的演算中不可或缺,是了解狭义相对论、广义相对论必需的数学基础。

(注: v 2 {\displaystyle v^{2}\,\!} 这符号中的上标 2 {\displaystyle 2} 不代表平方,而是代表第二个坐标,在较基础的数学上,常写作 v 2 {\displaystyle v_{2}\,\!} ,但是,在张量分析领域,指标写作上标或下标牵涉到对张量性质的提示,以及爱因斯坦求和约定。)

向量空间 V {\displaystyle V} 有另一个基底 e ¯ 1 , . . . , e ¯ n {\displaystyle {\bar {\mathbf {e} }}_{1},...,{\bar {\mathbf {e} }}_{n}\,\!} ,其坐标系统为 x ¯ 1 , . . . , x ¯ n {\displaystyle {\bar {x}}^{1},...,{\bar {x}}^{n}\,\!} 。对应这个基底, v {\displaystyle \mathbf {v} \,\!} 有分量 v ¯ 1 , v ¯ 2 , . . . , v ¯ n {\displaystyle {\bar {v}}^{1},{\bar {v}}^{2},...,{\bar {v}}^{n}\,\!} ,即 v = i v ¯ i e ¯ i {\displaystyle \textstyle \mathbf {v} =\sum _{i}{\bar {v}}^{i}{\bar {\mathbf {e} }}_{i}}

对于1...n之间任意整数 μ {\displaystyle \mu \,\!} ,我们知道 v ¯ μ {\displaystyle {\bar {v}}^{\mu }\,\!} v 1 , v 2 , . . . , v n {\displaystyle v^{1},v^{2},...,v^{n}\,\!} 的关系:

使用爱因斯坦求和约定可写成:

假设对偶空间 V {\displaystyle V^{*}} 有两个基底 d x 1 , d x 2 , . . . , d x n {\displaystyle {\mathbf {dx} ^{1},\mathbf {dx} ^{2},...,\mathbf {dx} ^{n}}\,\!} d x ¯ 1 , d x ¯ 2 , . . . , d x ¯ n {\displaystyle \mathbf {d{\bar {x}}} ^{1},\mathbf {d{\bar {x}}} ^{2},...,\mathbf {d{\bar {x}}} ^{n}\,\!} 。:289-297

假设 ω V , ω = i η i d x i = j η ¯ j d x ¯ j {\displaystyle \textstyle {\boldsymbol {\omega }}\in V^{*},{\boldsymbol {\omega }}=\sum _{i}\mathbf {\eta } _{i}\mathbf {dx} ^{i}=\sum _{j}{\bar {\mathbf {\eta } }}_{j}d{\bar {\mathbf {x} }}^{j}} 。则对于 1 {\displaystyle 1} ... n {\displaystyle n} 之间其中一个特定的整数 μ {\displaystyle \mu \,\!} ,我们知道 η ¯ μ {\displaystyle {\bar {\mathbf {\eta } }}_{\mu }\,\!} η 1 , η 2 , . . . , η n {\displaystyle \mathbf {\eta } _{1},\mathbf {\eta } _{2},...,\mathbf {\eta } _{n}\,\!} 的关系:

或使用爱因斯坦求和约定写成:

在欧几里得空间 V {\displaystyle V\,\!} 里,共变向量和反变向量之间的区分很小。这是因为能够使用内积运算从向量求得余向量;对于所有余向量 w {\displaystyle \mathbf {w} \,\!} ,通过下述方程,向量 v {\displaystyle \mathbf {v} \,\!} 和线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} ,唯一地确定了余向量 w {\displaystyle \mathbf {w} \,\!}

逆过来,通过上述方程,线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} 和每一个余向量,唯一地确定了向量 v {\displaystyle \mathbf {v} \,\!} 。由于这向量与余向量的相互辨认,我们可以提到向量的共变分量和反变分量;也就是说,它们只是同样向量对于基底和其对偶基底的不同表现。

给予 V {\displaystyle V\,\!} 的一个基底 f = ( X 1 , X 2 , , X n ) {\displaystyle {\mathfrak {f}}=(X_{1},X_{2},\dots ,X_{n})\,\!} ,则必存在一个唯一的对偶基底 f = ( Y 1 , Y 2 , , Y n ) {\displaystyle {\mathfrak {f}}^{\sharp }=(Y^{1},Y^{2},\dots ,Y^{n})\,\!} ,满足

其中, δ j i {\displaystyle \delta _{j}^{i}\,\!} 是克罗内克函数。

以这两种基底,任意向量 v {\displaystyle \mathbf {v} \,\!} 可以写为两种形式

其中, v i {\displaystyle v^{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的反变分量, v i {\displaystyle v_{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的共变分量,

在欧几里得空间R3里,使用内积运算,能够从向量求得余向量。给予一组可能不是标准正交基的基底,其基底向量为 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} ,就可以计算其对偶基底的基底向量:

其中, τ = e 1 ( e 2 × e 3 ) {\displaystyle \tau =\mathbf {e} _{1}\cdot (\mathbf {e} _{2}\times \mathbf {e} _{3})\,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} 所形成的平行六面体的体积。

反过来计算,

其中, τ = e 1 ( e 2 × e 3 ) = 1 / τ {\displaystyle \tau '=\mathbf {e} ^{1}\cdot (\mathbf {e} ^{2}\times \mathbf {e} ^{3})=1/\tau \,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} ^{1}\,\!} e 2 {\displaystyle \mathbf {e} ^{2}\,\!} e 3 {\displaystyle \mathbf {e} ^{3}\,\!} 所形成的平行六面体的体积 。

虽然 e i {\displaystyle \mathbf {e} _{i}\,\!} e j {\displaystyle \mathbf {e} ^{j}\,\!} 并不相互标准正交,它们相互对偶:

这样,任意向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

类似地,共变坐标为

这样, a {\displaystyle \mathbf {a} \,\!} 可以表达为

或者,

综合上述关系式,

向量 a {\displaystyle \mathbf {a} \,\!} 的共变坐标为

其中, g j i = e j e i {\displaystyle g_{ji}=\mathbf {e} _{j}\cdot \mathbf {e} _{i}\,\!} 是度规张量。

向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

其中, g j i = e j e i

相关

  • 地特胰岛素注射液地特胰岛素注射液(英文名:insulin Detemir)为长效胰岛素类似物,无色澄明液体,用于治疗糖尿病。其成分主要为地特胰岛素(通过基因重组技术,利用酵母生产的)。1单位(U)相当于0.142mg不含
  • 879年重要事件及趋势逝世重要人物
  • 三K党三K党(英语:Ku Klux Klan,/ˈkuː ˈklʌks ˈklæn, ˈkjuː/,简称KKK)是指美国历史上和现代三个不同时期奉行白人至上主义运动和基督教恐怖主义的民间团体,也是美国种族主义的代
  • 阿思本舰队阿思本舰队,是清朝同治年间,是一支由清政府委任英国官员赴英国购置新型战舰的海军。但舰队构成方式和清政府对指挥权、用人及花费等各方面皆出现严重分歧,最终双方解除合约,舰队
  • 尾节尾节(英语:Telson),又称尾柄,为节肢动物身体分节的最末节,没有附肢也没有神经节,因此并不是真正的体节。不同类群的节肢动物其尾节的形状与用途不尽然相同。海螯虾、真虾下目与其他
  • 法国启蒙主义法国启蒙主义是启蒙时代于法国的影响。
  • 小奇兵 (动画)《小奇兵》(Star Wars: Ewoks),科幻冒险卡通剧集。台湾台视曾于1987年1月11日至6月21日间于每周日上午播出伊娃族的远亲。火花皇后(Izrina)
  • 肝付良兼肝付良兼(1535年-1571年8月20日)是日本战国时代的武将、大隅国战国大名。肝付氏第17代当主。父亲是肝付氏第16代当主肝付兼续。在天文4年(1535年)出生。天文22年(1553年),在父亲兼续
  • 朱兆柏朱兆柏(1593年10月10日-1646年2月2日),行诚二十一,字茂如,号承庵,浙江省山阴县人,由翰林院庶吉士,崇祯庚午七月授简讨,壬申册封德藩,癸酉转右春坊左赞善,乙亥转谕德,己卯转庶子兼翰林院侍
  • 弗里德里希·威廉·冯·塞德利茨弗里德里希·威廉·冯·塞德利茨男爵(Friedrich Wilhelm, Freiherr von Seydlitz,1721年2月3日-1773年8月27日)普鲁士士兵,一名出色的骑兵将军,生于Herzogtum Cleve的Kalkar他父亲