共变和反变

✍ dations ◷ 2025-09-08 04:43:01 #向量,张量,微分几何,黎曼几何,多重线性代数

在数学里,反变(contravariant,也称逆变)和共变(covariant,也称协变)描述一个向量(或更广义来说,张量)的坐标,在向量空间的基底/坐标系转换之下,会如何改变。

反变和共变在张量场的演算中不可或缺,是了解狭义相对论、广义相对论必需的数学基础。

(注: v 2 {\displaystyle v^{2}\,\!} 这符号中的上标 2 {\displaystyle 2} 不代表平方,而是代表第二个坐标,在较基础的数学上,常写作 v 2 {\displaystyle v_{2}\,\!} ,但是,在张量分析领域,指标写作上标或下标牵涉到对张量性质的提示,以及爱因斯坦求和约定。)

向量空间 V {\displaystyle V} 有另一个基底 e ¯ 1 , . . . , e ¯ n {\displaystyle {\bar {\mathbf {e} }}_{1},...,{\bar {\mathbf {e} }}_{n}\,\!} ,其坐标系统为 x ¯ 1 , . . . , x ¯ n {\displaystyle {\bar {x}}^{1},...,{\bar {x}}^{n}\,\!} 。对应这个基底, v {\displaystyle \mathbf {v} \,\!} 有分量 v ¯ 1 , v ¯ 2 , . . . , v ¯ n {\displaystyle {\bar {v}}^{1},{\bar {v}}^{2},...,{\bar {v}}^{n}\,\!} ,即 v = i v ¯ i e ¯ i {\displaystyle \textstyle \mathbf {v} =\sum _{i}{\bar {v}}^{i}{\bar {\mathbf {e} }}_{i}}

对于1...n之间任意整数 μ {\displaystyle \mu \,\!} ,我们知道 v ¯ μ {\displaystyle {\bar {v}}^{\mu }\,\!} v 1 , v 2 , . . . , v n {\displaystyle v^{1},v^{2},...,v^{n}\,\!} 的关系:

使用爱因斯坦求和约定可写成:

假设对偶空间 V {\displaystyle V^{*}} 有两个基底 d x 1 , d x 2 , . . . , d x n {\displaystyle {\mathbf {dx} ^{1},\mathbf {dx} ^{2},...,\mathbf {dx} ^{n}}\,\!} d x ¯ 1 , d x ¯ 2 , . . . , d x ¯ n {\displaystyle \mathbf {d{\bar {x}}} ^{1},\mathbf {d{\bar {x}}} ^{2},...,\mathbf {d{\bar {x}}} ^{n}\,\!} 。:289-297

假设 ω V , ω = i η i d x i = j η ¯ j d x ¯ j {\displaystyle \textstyle {\boldsymbol {\omega }}\in V^{*},{\boldsymbol {\omega }}=\sum _{i}\mathbf {\eta } _{i}\mathbf {dx} ^{i}=\sum _{j}{\bar {\mathbf {\eta } }}_{j}d{\bar {\mathbf {x} }}^{j}} 。则对于 1 {\displaystyle 1} ... n {\displaystyle n} 之间其中一个特定的整数 μ {\displaystyle \mu \,\!} ,我们知道 η ¯ μ {\displaystyle {\bar {\mathbf {\eta } }}_{\mu }\,\!} η 1 , η 2 , . . . , η n {\displaystyle \mathbf {\eta } _{1},\mathbf {\eta } _{2},...,\mathbf {\eta } _{n}\,\!} 的关系:

或使用爱因斯坦求和约定写成:

在欧几里得空间 V {\displaystyle V\,\!} 里,共变向量和反变向量之间的区分很小。这是因为能够使用内积运算从向量求得余向量;对于所有余向量 w {\displaystyle \mathbf {w} \,\!} ,通过下述方程,向量 v {\displaystyle \mathbf {v} \,\!} 和线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} ,唯一地确定了余向量 w {\displaystyle \mathbf {w} \,\!}

逆过来,通过上述方程,线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} 和每一个余向量,唯一地确定了向量 v {\displaystyle \mathbf {v} \,\!} 。由于这向量与余向量的相互辨认,我们可以提到向量的共变分量和反变分量;也就是说,它们只是同样向量对于基底和其对偶基底的不同表现。

给予 V {\displaystyle V\,\!} 的一个基底 f = ( X 1 , X 2 , , X n ) {\displaystyle {\mathfrak {f}}=(X_{1},X_{2},\dots ,X_{n})\,\!} ,则必存在一个唯一的对偶基底 f = ( Y 1 , Y 2 , , Y n ) {\displaystyle {\mathfrak {f}}^{\sharp }=(Y^{1},Y^{2},\dots ,Y^{n})\,\!} ,满足

其中, δ j i {\displaystyle \delta _{j}^{i}\,\!} 是克罗内克函数。

以这两种基底,任意向量 v {\displaystyle \mathbf {v} \,\!} 可以写为两种形式

其中, v i {\displaystyle v^{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的反变分量, v i {\displaystyle v_{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的共变分量,

在欧几里得空间R3里,使用内积运算,能够从向量求得余向量。给予一组可能不是标准正交基的基底,其基底向量为 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} ,就可以计算其对偶基底的基底向量:

其中, τ = e 1 ( e 2 × e 3 ) {\displaystyle \tau =\mathbf {e} _{1}\cdot (\mathbf {e} _{2}\times \mathbf {e} _{3})\,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} 所形成的平行六面体的体积。

反过来计算,

其中, τ = e 1 ( e 2 × e 3 ) = 1 / τ {\displaystyle \tau '=\mathbf {e} ^{1}\cdot (\mathbf {e} ^{2}\times \mathbf {e} ^{3})=1/\tau \,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} ^{1}\,\!} e 2 {\displaystyle \mathbf {e} ^{2}\,\!} e 3 {\displaystyle \mathbf {e} ^{3}\,\!} 所形成的平行六面体的体积 。

虽然 e i {\displaystyle \mathbf {e} _{i}\,\!} e j {\displaystyle \mathbf {e} ^{j}\,\!} 并不相互标准正交,它们相互对偶:

这样,任意向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

类似地,共变坐标为

这样, a {\displaystyle \mathbf {a} \,\!} 可以表达为

或者,

综合上述关系式,

向量 a {\displaystyle \mathbf {a} \,\!} 的共变坐标为

其中, g j i = e j e i {\displaystyle g_{ji}=\mathbf {e} _{j}\cdot \mathbf {e} _{i}\,\!} 是度规张量。

向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

其中, g j i = e j e i

相关

  • 标准氨基酸标准氨基酸(英语:Standard amino acids)或称蛋白氨基酸(proteinogenic amino acids),是生物细胞中用来合成蛋白质的共20种氨基酸。本列表主要描述其名称、标示方法、结构与性质。
  • 雪纺雪纺(法语:Chiffon),采用涤纶或者真丝为原料,经左右加捻加工而成。雪纺为法语单词“Chiffon”的音译。雪纺质地柔软、轻薄透明,手感滑爽富有弹性,外观清淡爽洁,具有良好的透气性和悬
  • 模控学控制论(英:Cybernetics)是探索调节系统的跨学科研究, 它用于研究控制系统的结构,局限和发展。诺伯特·维纳在1948年将控制论定义为“对动物和机器中的控制与通信的科学研究。”
  • 侧颈龟亚目Pleuroderes - Duméril and Bibron,1834 Pleurodera - Lichtenstein,1856 Pleurodera - Cope,1864侧颈龟亚目(学名:Pleurodira)是龟鳖目的两个亚目之一,另一个是曲颈龟亚目。这两
  • 沃伦·盖玛利尔·哈定沃伦·盖玛利尔·哈定(Warren Gamaliel Harding,1865年11月2日-1923年8月2日),美国第29任总统。共和党籍。1920年当选总统,1923年因心脏病突发于任内病逝。俄亥俄州出身,知名报刊发
  • 波季尔利亚 (扎列希基区)坐标:48°51′32″N 25°36′44″E / 48.85889°N 25.61222°E / 48.85889; 25.61222波季尔利亚(乌克兰语:Поділля),是乌克兰的村落,位于该国西部捷尔诺波尔州,由扎列希基区
  • Danger (Super Junior-D&E迷你专辑)YouTube上的Gloomy YouTube上的Danger YouTube上的Danger (舞蹈版) 《Danger》是韩国演唱团体Super Junior Donghae & Eunhyuk的第三张韩语迷你专辑,于2019年4月14日发行
  • 林巳奈夫林巳奈夫(日语:林 巳奈夫/はやし みなお,1925年5月9日-2006年1月1日),日本考古学家,神奈川县出身,研究领域主要是中国青铜器和玉器。1925年5月9日,林巳奈夫出生于神奈川县藤泽市鹄沼,其
  • 玉山竹属玉山竹属(学名:)是禾本科下的一个属,为灌木状竹。该属约有86种,分布范围包括亚洲及非洲。
  • 朴承弼朴承弼(韩语:박승필;1875年-1932年),朝鲜半岛最早期的电影制作人之一,曾资助朝鲜半岛第一部电影《义理的仇讨》、首部纪录片《京城市内全景》和完全依靠朝鲜半岛资金、技术、人员制