共变和反变

✍ dations ◷ 2025-04-26 12:30:35 #向量,张量,微分几何,黎曼几何,多重线性代数

在数学里,反变(contravariant,也称逆变)和共变(covariant,也称协变)描述一个向量(或更广义来说,张量)的坐标,在向量空间的基底/坐标系转换之下,会如何改变。

反变和共变在张量场的演算中不可或缺,是了解狭义相对论、广义相对论必需的数学基础。

(注: v 2 {\displaystyle v^{2}\,\!} 这符号中的上标 2 {\displaystyle 2} 不代表平方,而是代表第二个坐标,在较基础的数学上,常写作 v 2 {\displaystyle v_{2}\,\!} ,但是,在张量分析领域,指标写作上标或下标牵涉到对张量性质的提示,以及爱因斯坦求和约定。)

向量空间 V {\displaystyle V} 有另一个基底 e ¯ 1 , . . . , e ¯ n {\displaystyle {\bar {\mathbf {e} }}_{1},...,{\bar {\mathbf {e} }}_{n}\,\!} ,其坐标系统为 x ¯ 1 , . . . , x ¯ n {\displaystyle {\bar {x}}^{1},...,{\bar {x}}^{n}\,\!} 。对应这个基底, v {\displaystyle \mathbf {v} \,\!} 有分量 v ¯ 1 , v ¯ 2 , . . . , v ¯ n {\displaystyle {\bar {v}}^{1},{\bar {v}}^{2},...,{\bar {v}}^{n}\,\!} ,即 v = i v ¯ i e ¯ i {\displaystyle \textstyle \mathbf {v} =\sum _{i}{\bar {v}}^{i}{\bar {\mathbf {e} }}_{i}}

对于1...n之间任意整数 μ {\displaystyle \mu \,\!} ,我们知道 v ¯ μ {\displaystyle {\bar {v}}^{\mu }\,\!} v 1 , v 2 , . . . , v n {\displaystyle v^{1},v^{2},...,v^{n}\,\!} 的关系:

使用爱因斯坦求和约定可写成:

假设对偶空间 V {\displaystyle V^{*}} 有两个基底 d x 1 , d x 2 , . . . , d x n {\displaystyle {\mathbf {dx} ^{1},\mathbf {dx} ^{2},...,\mathbf {dx} ^{n}}\,\!} d x ¯ 1 , d x ¯ 2 , . . . , d x ¯ n {\displaystyle \mathbf {d{\bar {x}}} ^{1},\mathbf {d{\bar {x}}} ^{2},...,\mathbf {d{\bar {x}}} ^{n}\,\!} 。:289-297

假设 ω V , ω = i η i d x i = j η ¯ j d x ¯ j {\displaystyle \textstyle {\boldsymbol {\omega }}\in V^{*},{\boldsymbol {\omega }}=\sum _{i}\mathbf {\eta } _{i}\mathbf {dx} ^{i}=\sum _{j}{\bar {\mathbf {\eta } }}_{j}d{\bar {\mathbf {x} }}^{j}} 。则对于 1 {\displaystyle 1} ... n {\displaystyle n} 之间其中一个特定的整数 μ {\displaystyle \mu \,\!} ,我们知道 η ¯ μ {\displaystyle {\bar {\mathbf {\eta } }}_{\mu }\,\!} η 1 , η 2 , . . . , η n {\displaystyle \mathbf {\eta } _{1},\mathbf {\eta } _{2},...,\mathbf {\eta } _{n}\,\!} 的关系:

或使用爱因斯坦求和约定写成:

在欧几里得空间 V {\displaystyle V\,\!} 里,共变向量和反变向量之间的区分很小。这是因为能够使用内积运算从向量求得余向量;对于所有余向量 w {\displaystyle \mathbf {w} \,\!} ,通过下述方程,向量 v {\displaystyle \mathbf {v} \,\!} 和线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} ,唯一地确定了余向量 w {\displaystyle \mathbf {w} \,\!}

逆过来,通过上述方程,线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} 和每一个余向量,唯一地确定了向量 v {\displaystyle \mathbf {v} \,\!} 。由于这向量与余向量的相互辨认,我们可以提到向量的共变分量和反变分量;也就是说,它们只是同样向量对于基底和其对偶基底的不同表现。

给予 V {\displaystyle V\,\!} 的一个基底 f = ( X 1 , X 2 , , X n ) {\displaystyle {\mathfrak {f}}=(X_{1},X_{2},\dots ,X_{n})\,\!} ,则必存在一个唯一的对偶基底 f = ( Y 1 , Y 2 , , Y n ) {\displaystyle {\mathfrak {f}}^{\sharp }=(Y^{1},Y^{2},\dots ,Y^{n})\,\!} ,满足

其中, δ j i {\displaystyle \delta _{j}^{i}\,\!} 是克罗内克函数。

以这两种基底,任意向量 v {\displaystyle \mathbf {v} \,\!} 可以写为两种形式

其中, v i {\displaystyle v^{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的反变分量, v i {\displaystyle v_{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的共变分量,

在欧几里得空间R3里,使用内积运算,能够从向量求得余向量。给予一组可能不是标准正交基的基底,其基底向量为 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} ,就可以计算其对偶基底的基底向量:

其中, τ = e 1 ( e 2 × e 3 ) {\displaystyle \tau =\mathbf {e} _{1}\cdot (\mathbf {e} _{2}\times \mathbf {e} _{3})\,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} 所形成的平行六面体的体积。

反过来计算,

其中, τ = e 1 ( e 2 × e 3 ) = 1 / τ {\displaystyle \tau '=\mathbf {e} ^{1}\cdot (\mathbf {e} ^{2}\times \mathbf {e} ^{3})=1/\tau \,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} ^{1}\,\!} e 2 {\displaystyle \mathbf {e} ^{2}\,\!} e 3 {\displaystyle \mathbf {e} ^{3}\,\!} 所形成的平行六面体的体积 。

虽然 e i {\displaystyle \mathbf {e} _{i}\,\!} e j {\displaystyle \mathbf {e} ^{j}\,\!} 并不相互标准正交,它们相互对偶:

这样,任意向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

类似地,共变坐标为

这样, a {\displaystyle \mathbf {a} \,\!} 可以表达为

或者,

综合上述关系式,

向量 a {\displaystyle \mathbf {a} \,\!} 的共变坐标为

其中, g j i = e j e i {\displaystyle g_{ji}=\mathbf {e} _{j}\cdot \mathbf {e} _{i}\,\!} 是度规张量。

向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

其中, g j i = e j e i

相关

  • 砷中毒砷中毒是一种肇因于体内砷含量提升的医学病征,指动物体内重要的代谢酵素,在砷的影响下受别构调节作用而导致。一般也视为是重金属中毒。若于短时间产生砷中毒现象,其症状可能包
  • 阿尔吉克语系阿尔吉克语系(英:Algic languages)是北美洲原住民语言语系,主要使用在北美洲的北部地区,包括加拿大和美国的一些省份。语系内多数语言属于阿尔冈昆语族,分布在北美东岸至落基山脉
  • Mnsub2/subOsub3/sub三氧化二锰是一种无机化合物,化学式为Mn2O3,其中锰处于+3氧化态。在800℃以下将二氧化锰于空气中灼烧可以得到α-Mn2O3(更高温度得到Mn3O4),在600-800℃空气中加热Mn2+的硝酸盐、
  • 咒怨《咒怨》(日语:呪怨)是一部在2003年上映的电影。由清水崇导演和编剧,是咒怨系列的第一集,在2003年1月25日在日本发行。台湾方面,首周三天台北票房为新台币1800万元、全台票房为新
  • 赛玛教赛玛教又称赛玛理,是云南省沧源佤族自治县以及缅甸佤邦部分佤族的一种宗教信仰,以创始人赛玛命名。根据传说,赛玛教在云南历史上的信徒范围包括沧源全境、耿马南部、双江西南部
  • 莱曼·弗兰克·鲍姆李曼·弗兰克·鲍姆(英语:Lyman Frank Baum,1856年5月15日-1919年5月6日),又译为富兰克·鲍姆,是个美国作家、演员、报纸编辑,也曾是独立电影的电影监制。《绿野仙踪》(The Wonderful
  • 河水牛河水牛(学名:)是分布在印度、尼泊尔、巴基斯坦、不丹及泰国的濒危物种。它们是大型的有蹄类,且是家养水牛的祖先。世界自然保护联盟]将河水牛列为濒危物种,其总数量只有少于4000
  • 乔启明乔启明(1897年12月28日-1970年1月18日),字映东,山西猗氏人,中国农业经济学家。民国37年(1948年)在农会北区当选第一届立法委员。早年考入运城河东书院,完成学业后,考入山西大学预科。
  • 张之路张之路(1945年-),山东诸城人,中国当代作家。毕业于首都师范大学物理系,现为中国电影集团一级编剧,中国作家协会儿童文学委员会副主任。作品曾获中国图书奖一等奖、陈伯吹儿童文学奖
  • 凯瑞·福永凯瑞·乔吉·福永(英语:Cary Joji Fukunaga,1977年7月10日-)是一位美国导演、编剧及摄影师。出生于加利福尼亚州的奥克兰,曾在法国、日本和墨西哥城居住,现居纽约市。他的父亲是日