共变和反变

✍ dations ◷ 2025-12-06 08:02:31 #向量,张量,微分几何,黎曼几何,多重线性代数

在数学里,反变(contravariant,也称逆变)和共变(covariant,也称协变)描述一个向量(或更广义来说,张量)的坐标,在向量空间的基底/坐标系转换之下,会如何改变。

反变和共变在张量场的演算中不可或缺,是了解狭义相对论、广义相对论必需的数学基础。

(注: v 2 {\displaystyle v^{2}\,\!} 这符号中的上标 2 {\displaystyle 2} 不代表平方,而是代表第二个坐标,在较基础的数学上,常写作 v 2 {\displaystyle v_{2}\,\!} ,但是,在张量分析领域,指标写作上标或下标牵涉到对张量性质的提示,以及爱因斯坦求和约定。)

向量空间 V {\displaystyle V} 有另一个基底 e ¯ 1 , . . . , e ¯ n {\displaystyle {\bar {\mathbf {e} }}_{1},...,{\bar {\mathbf {e} }}_{n}\,\!} ,其坐标系统为 x ¯ 1 , . . . , x ¯ n {\displaystyle {\bar {x}}^{1},...,{\bar {x}}^{n}\,\!} 。对应这个基底, v {\displaystyle \mathbf {v} \,\!} 有分量 v ¯ 1 , v ¯ 2 , . . . , v ¯ n {\displaystyle {\bar {v}}^{1},{\bar {v}}^{2},...,{\bar {v}}^{n}\,\!} ,即 v = i v ¯ i e ¯ i {\displaystyle \textstyle \mathbf {v} =\sum _{i}{\bar {v}}^{i}{\bar {\mathbf {e} }}_{i}}

对于1...n之间任意整数 μ {\displaystyle \mu \,\!} ,我们知道 v ¯ μ {\displaystyle {\bar {v}}^{\mu }\,\!} v 1 , v 2 , . . . , v n {\displaystyle v^{1},v^{2},...,v^{n}\,\!} 的关系:

使用爱因斯坦求和约定可写成:

假设对偶空间 V {\displaystyle V^{*}} 有两个基底 d x 1 , d x 2 , . . . , d x n {\displaystyle {\mathbf {dx} ^{1},\mathbf {dx} ^{2},...,\mathbf {dx} ^{n}}\,\!} d x ¯ 1 , d x ¯ 2 , . . . , d x ¯ n {\displaystyle \mathbf {d{\bar {x}}} ^{1},\mathbf {d{\bar {x}}} ^{2},...,\mathbf {d{\bar {x}}} ^{n}\,\!} 。:289-297

假设 ω V , ω = i η i d x i = j η ¯ j d x ¯ j {\displaystyle \textstyle {\boldsymbol {\omega }}\in V^{*},{\boldsymbol {\omega }}=\sum _{i}\mathbf {\eta } _{i}\mathbf {dx} ^{i}=\sum _{j}{\bar {\mathbf {\eta } }}_{j}d{\bar {\mathbf {x} }}^{j}} 。则对于 1 {\displaystyle 1} ... n {\displaystyle n} 之间其中一个特定的整数 μ {\displaystyle \mu \,\!} ,我们知道 η ¯ μ {\displaystyle {\bar {\mathbf {\eta } }}_{\mu }\,\!} η 1 , η 2 , . . . , η n {\displaystyle \mathbf {\eta } _{1},\mathbf {\eta } _{2},...,\mathbf {\eta } _{n}\,\!} 的关系:

或使用爱因斯坦求和约定写成:

在欧几里得空间 V {\displaystyle V\,\!} 里,共变向量和反变向量之间的区分很小。这是因为能够使用内积运算从向量求得余向量;对于所有余向量 w {\displaystyle \mathbf {w} \,\!} ,通过下述方程,向量 v {\displaystyle \mathbf {v} \,\!} 和线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} ,唯一地确定了余向量 w {\displaystyle \mathbf {w} \,\!}

逆过来,通过上述方程,线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} 和每一个余向量,唯一地确定了向量 v {\displaystyle \mathbf {v} \,\!} 。由于这向量与余向量的相互辨认,我们可以提到向量的共变分量和反变分量;也就是说,它们只是同样向量对于基底和其对偶基底的不同表现。

给予 V {\displaystyle V\,\!} 的一个基底 f = ( X 1 , X 2 , , X n ) {\displaystyle {\mathfrak {f}}=(X_{1},X_{2},\dots ,X_{n})\,\!} ,则必存在一个唯一的对偶基底 f = ( Y 1 , Y 2 , , Y n ) {\displaystyle {\mathfrak {f}}^{\sharp }=(Y^{1},Y^{2},\dots ,Y^{n})\,\!} ,满足

其中, δ j i {\displaystyle \delta _{j}^{i}\,\!} 是克罗内克函数。

以这两种基底,任意向量 v {\displaystyle \mathbf {v} \,\!} 可以写为两种形式

其中, v i {\displaystyle v^{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的反变分量, v i {\displaystyle v_{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的共变分量,

在欧几里得空间R3里,使用内积运算,能够从向量求得余向量。给予一组可能不是标准正交基的基底,其基底向量为 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} ,就可以计算其对偶基底的基底向量:

其中, τ = e 1 ( e 2 × e 3 ) {\displaystyle \tau =\mathbf {e} _{1}\cdot (\mathbf {e} _{2}\times \mathbf {e} _{3})\,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} 所形成的平行六面体的体积。

反过来计算,

其中, τ = e 1 ( e 2 × e 3 ) = 1 / τ {\displaystyle \tau '=\mathbf {e} ^{1}\cdot (\mathbf {e} ^{2}\times \mathbf {e} ^{3})=1/\tau \,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} ^{1}\,\!} e 2 {\displaystyle \mathbf {e} ^{2}\,\!} e 3 {\displaystyle \mathbf {e} ^{3}\,\!} 所形成的平行六面体的体积 。

虽然 e i {\displaystyle \mathbf {e} _{i}\,\!} e j {\displaystyle \mathbf {e} ^{j}\,\!} 并不相互标准正交,它们相互对偶:

这样,任意向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

类似地,共变坐标为

这样, a {\displaystyle \mathbf {a} \,\!} 可以表达为

或者,

综合上述关系式,

向量 a {\displaystyle \mathbf {a} \,\!} 的共变坐标为

其中, g j i = e j e i {\displaystyle g_{ji}=\mathbf {e} _{j}\cdot \mathbf {e} _{i}\,\!} 是度规张量。

向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

其中, g j i = e j e i

相关

  • 引子引物(英文:primer),又译引子,是一小段单链DNA或RNA,作为DNA复制的起始点,存在于自然中生物的DNA复制(RNA引物)和聚合酶链式反应(PCR)中人工合成的引物(通常为DNA引物)。之所以需要引物是
  • 五彩冠龙五彩冠龙(学名:Guanlong wucaii)是暴龙超科下的一种恐龙,属于原角鼻龙科,是其已知最早的暴龙类恐龙之一,生活于1亿6000万年前侏罗纪晚期牛津阶,比它著名的亲属暴龙要早9千2百万年。
  • 鸟击鸟击,或称鸟撞、撞鸟,航空界俗称吸鸟。此指鸟类与飞行中的飞机、高速运行的火车、汽车等发生碰撞,造成意外的事件。飞机起飞和降落过程是最容易发生鸟击的阶段,超过90%的鸟击发
  • Costus闭鞘姜属(学名:Costus)是闭鞘姜科下的一个属,为多年生草本植物。该属共有约150种,主要分布于热带美洲和非洲。
  • 黏胶层黏胶层(Mucigel)是覆盖在植物根冠富含黏性的一种物质。根冠最外层的细胞会分泌有丰富的碳水化合物,如果胶,其中高基氏体是产生黏胶层的胞器,细胞透过胞吐作用。在高微生物的土壤
  • 南安普敦南安普敦(英语:Southampton,读音: /ˌsaʊθˈhæmptən/ 帮助·信息),亦称修咸顿,英国英格兰东南区域汉普郡的港口城市,南、西南临索伦特海峡,拥有城市地位,英格兰的单一管理区,人口2
  • 预士大专程度义务役预备军官士官考试,简称“预官预士考试”,是中华民国政府依照军官士官服役条例所实行的服役方式,主管机关为国防部,开放予合乎标准且尚未服义务役的男子,录取者受训
  • 罗马尼亚电视台罗马尼亚电视台(罗马尼亚语:Televiziunea Română / TVR),或称罗马尼亚电视公司(Societatea Română de Televiziune / SRTV),是罗马尼亚的国家电视台,总部位于布加勒斯特。该电视
  • 阿伦·基尔伯特阿伦·吉尔伯特(Alan Gilbert,1967年2月23日-),美国指挥家,小提琴家。1967年生于纽约市。将于2017-2018乐季起接任北德广播易北爱乐乐团首席指挥。,曾任纽约爱乐乐团音乐总监以及担
  • 宋兴 (明朝宦官)宋兴(1508年-1582年), 字廷起,号瀛海,河间肃宁人,嘉靖时期的司礼监太监。因为他熟悉宫中典章制度,曾先后主持寿安皇太后邵氏(成化帝的贵妃、嘉靖帝的祖母)、慈孝献皇后蒋氏(嘉靖帝的生