共变和反变

✍ dations ◷ 2025-07-01 09:28:34 #向量,张量,微分几何,黎曼几何,多重线性代数

在数学里,反变(contravariant,也称逆变)和共变(covariant,也称协变)描述一个向量(或更广义来说,张量)的坐标,在向量空间的基底/坐标系转换之下,会如何改变。

反变和共变在张量场的演算中不可或缺,是了解狭义相对论、广义相对论必需的数学基础。

(注: v 2 {\displaystyle v^{2}\,\!} 这符号中的上标 2 {\displaystyle 2} 不代表平方,而是代表第二个坐标,在较基础的数学上,常写作 v 2 {\displaystyle v_{2}\,\!} ,但是,在张量分析领域,指标写作上标或下标牵涉到对张量性质的提示,以及爱因斯坦求和约定。)

向量空间 V {\displaystyle V} 有另一个基底 e ¯ 1 , . . . , e ¯ n {\displaystyle {\bar {\mathbf {e} }}_{1},...,{\bar {\mathbf {e} }}_{n}\,\!} ,其坐标系统为 x ¯ 1 , . . . , x ¯ n {\displaystyle {\bar {x}}^{1},...,{\bar {x}}^{n}\,\!} 。对应这个基底, v {\displaystyle \mathbf {v} \,\!} 有分量 v ¯ 1 , v ¯ 2 , . . . , v ¯ n {\displaystyle {\bar {v}}^{1},{\bar {v}}^{2},...,{\bar {v}}^{n}\,\!} ,即 v = i v ¯ i e ¯ i {\displaystyle \textstyle \mathbf {v} =\sum _{i}{\bar {v}}^{i}{\bar {\mathbf {e} }}_{i}}

对于1...n之间任意整数 μ {\displaystyle \mu \,\!} ,我们知道 v ¯ μ {\displaystyle {\bar {v}}^{\mu }\,\!} v 1 , v 2 , . . . , v n {\displaystyle v^{1},v^{2},...,v^{n}\,\!} 的关系:

使用爱因斯坦求和约定可写成:

假设对偶空间 V {\displaystyle V^{*}} 有两个基底 d x 1 , d x 2 , . . . , d x n {\displaystyle {\mathbf {dx} ^{1},\mathbf {dx} ^{2},...,\mathbf {dx} ^{n}}\,\!} d x ¯ 1 , d x ¯ 2 , . . . , d x ¯ n {\displaystyle \mathbf {d{\bar {x}}} ^{1},\mathbf {d{\bar {x}}} ^{2},...,\mathbf {d{\bar {x}}} ^{n}\,\!} 。:289-297

假设 ω V , ω = i η i d x i = j η ¯ j d x ¯ j {\displaystyle \textstyle {\boldsymbol {\omega }}\in V^{*},{\boldsymbol {\omega }}=\sum _{i}\mathbf {\eta } _{i}\mathbf {dx} ^{i}=\sum _{j}{\bar {\mathbf {\eta } }}_{j}d{\bar {\mathbf {x} }}^{j}} 。则对于 1 {\displaystyle 1} ... n {\displaystyle n} 之间其中一个特定的整数 μ {\displaystyle \mu \,\!} ,我们知道 η ¯ μ {\displaystyle {\bar {\mathbf {\eta } }}_{\mu }\,\!} η 1 , η 2 , . . . , η n {\displaystyle \mathbf {\eta } _{1},\mathbf {\eta } _{2},...,\mathbf {\eta } _{n}\,\!} 的关系:

或使用爱因斯坦求和约定写成:

在欧几里得空间 V {\displaystyle V\,\!} 里,共变向量和反变向量之间的区分很小。这是因为能够使用内积运算从向量求得余向量;对于所有余向量 w {\displaystyle \mathbf {w} \,\!} ,通过下述方程,向量 v {\displaystyle \mathbf {v} \,\!} 和线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} ,唯一地确定了余向量 w {\displaystyle \mathbf {w} \,\!}

逆过来,通过上述方程,线性泛函 α ( w ) {\displaystyle \alpha (\mathbf {w} )\,\!} 和每一个余向量,唯一地确定了向量 v {\displaystyle \mathbf {v} \,\!} 。由于这向量与余向量的相互辨认,我们可以提到向量的共变分量和反变分量;也就是说,它们只是同样向量对于基底和其对偶基底的不同表现。

给予 V {\displaystyle V\,\!} 的一个基底 f = ( X 1 , X 2 , , X n ) {\displaystyle {\mathfrak {f}}=(X_{1},X_{2},\dots ,X_{n})\,\!} ,则必存在一个唯一的对偶基底 f = ( Y 1 , Y 2 , , Y n ) {\displaystyle {\mathfrak {f}}^{\sharp }=(Y^{1},Y^{2},\dots ,Y^{n})\,\!} ,满足

其中, δ j i {\displaystyle \delta _{j}^{i}\,\!} 是克罗内克函数。

以这两种基底,任意向量 v {\displaystyle \mathbf {v} \,\!} 可以写为两种形式

其中, v i {\displaystyle v^{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的反变分量, v i {\displaystyle v_{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的共变分量,

在欧几里得空间R3里,使用内积运算,能够从向量求得余向量。给予一组可能不是标准正交基的基底,其基底向量为 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} ,就可以计算其对偶基底的基底向量:

其中, τ = e 1 ( e 2 × e 3 ) {\displaystyle \tau =\mathbf {e} _{1}\cdot (\mathbf {e} _{2}\times \mathbf {e} _{3})\,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} 所形成的平行六面体的体积。

反过来计算,

其中, τ = e 1 ( e 2 × e 3 ) = 1 / τ {\displaystyle \tau '=\mathbf {e} ^{1}\cdot (\mathbf {e} ^{2}\times \mathbf {e} ^{3})=1/\tau \,\!} 是三个基底向量 e 1 {\displaystyle \mathbf {e} ^{1}\,\!} e 2 {\displaystyle \mathbf {e} ^{2}\,\!} e 3 {\displaystyle \mathbf {e} ^{3}\,\!} 所形成的平行六面体的体积 。

虽然 e i {\displaystyle \mathbf {e} _{i}\,\!} e j {\displaystyle \mathbf {e} ^{j}\,\!} 并不相互标准正交,它们相互对偶:

这样,任意向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

类似地,共变坐标为

这样, a {\displaystyle \mathbf {a} \,\!} 可以表达为

或者,

综合上述关系式,

向量 a {\displaystyle \mathbf {a} \,\!} 的共变坐标为

其中, g j i = e j e i {\displaystyle g_{ji}=\mathbf {e} _{j}\cdot \mathbf {e} _{i}\,\!} 是度规张量。

向量 a {\displaystyle \mathbf {a} \,\!} 的反变坐标为

其中, g j i = e j e i

相关

  • 肾盂肾盂(英语:renal pelvis)是肾脏内侧的漏斗状空腔,下端连接至输尿管,上端连接二到三个肾大盏。如同输尿管,肾盂的表面被一层仅有数个细胞厚的黏膜所覆盖,而黏膜分别是由上方的移行上
  • 氢氧化钡氢氧化钡是一种钡的化合物,分子式为Ba(OH)2,通常外观为白色颗粒状。氢氧化钡在分析化学中的滴定法可以当做弱酸的指示剂,对有机的弱酸别有效。它透明的溶液是不含碳酸盐的。不
  • 天冬氨酸转氨酶天冬氨酸氨基转移酶(英语:Aspartate Transaminase,缩写 AST),也称作谷草转氨酶(SGOT),是一种磷酸吡哆醛蛋白质,也可以作用于L-苯丙氨酸、L-酪氨酸和L-色氨酸(EC 2.6.1.1)。谷草转氨酶
  • 可用意识时间可用意识时间(Time of useful consciousness,简称TUC)是指一个人在氧气供应不足的情况下所能够进行飞航任务的反应时间。这段时间是从氧气供应的中断或暴露在缺氧环境中开始
  • 玳瑁猫玳瑁猫是一种毛发颜色(英语:animal coloration)与玳瑁相近的猫。玳瑁猫大部分为雌性,雄性玳瑁猫少见并且毛色更为接近纯色。玳瑁猫毛发通常包含白色以及另外两种颜色,一般会紧密
  • 拟菌病毒属拟菌病毒属(学名:)是一个包括(APMV)的一个属,或许是与演化史相关的巨型病毒。通常所说的“拟菌病毒”就指APMV。在口语中,APMV更普遍简称为“米米病毒”(mimivirus)。2011年10月中旬,
  • 纽约影评人协会奖最佳女主角纽约影评人协会奖最佳女主角(英语:New York Film Critics Circle Award for Best Actress)是纽约影评人协会奖的主要奖项之一。
  • 大庄事件大庄事件,或称吕家望事件,1888年8月2日台东直隶州所属的里垅庄即新开园府的汉人移民者及原住民(主要为大武垅族),因为卑南抚垦局委员雷福海等官员的压榨及欺凌妇女,乃率众700余人
  • 质量矩阵在分析力学中,质量矩阵是质量到广义坐标概念上的推广,它给出了系统广义坐标的变化率和系统动能的关系,即其中
  • 米兰·潘切夫斯基米兰·潘切夫斯基(英语:Milan Pančevski;马其顿语:Милан Панчевски;1935年5月16日-2019年1月19日),马其顿族,是南斯拉夫的党和国家领导人,南斯拉夫共产主义者联盟中央