梅尔频率倒谱系数

✍ dations ◷ 2025-01-11 06:51:09 #信号处理

在声音处理领域中,梅尔频率倒谱(Mel-Frequency Cepstrum)是基于声音频率的非线性梅尔刻度(mel scale)的对数能量频谱的线性变换。

梅尔频率倒谱系数 (Mel-Frequency Cepstral Coefficients,MFCCs)就是组成梅尔频率倒谱的系数。它衍生自音讯片段的倒频谱(cepstrum)。倒谱和梅尔频率倒谱的区别在于,梅尔频率倒谱的频带划分是在梅尔刻度上等距划分的,它比用于正常的对数倒频谱中的线性间隔的频带更能近似人类的听觉系统。这样的非线性表示,可以在多个领域中使声音信号有更好的表示。例如在音讯压缩中。

梅尔频率倒谱系数(MFCC)广泛被应用于语音识别的功能。他们由Davis和Mermelstein在1980年代提出,并在其后持续是最先进的技术之一。在MFCC之前,线性预测系数(LPCS)和线性预测倒谱系数(LPCCs)是自动语音识别的的主流方法。


MFCC通常有以下之过程:

声音信号是连续变化的,为了将连续变化信号简化,我们假设在一个短时间尺度内,音频信号不发生改变。因此将信号以多个采样点集合成一个单位,称为'''讯框'''。一个讯框多为20-40毫秒,如果讯框长度更短,那每个讯框内的采样点将不足以做出可靠的频谱计算,但若长度太长,则每个讯框信号会变化太大。

预强化的目的就是为了消除发声过程中,声带和嘴唇造成的效应,来补偿语音信号受到发音系统所压抑的高频部分。并且能突显高频的共振峰。

由于信号在时域上的变化通常很难看出信号的特性,所以通常透过傅里叶变换将它变换成频域上的能量分布来观察,不同的能量分布,就能代表不同语音的特性。

由于能量频谱中还存在大量的无用讯息,尤其人耳无法分辨高频的频率变化,因此让频谱通过梅尔滤波器。梅尔滤波器,也就是一组20个非线性分布的三角带通滤波器(Triangular Bandpass Filters),能求得每一个滤波器输出的对数能量。必须注意的是:这 20 个三角带通滤波器在'''梅尔刻度'''的频率上是平均分布的。梅尔频率代表一般人耳对于频率的感受度,由此也可以看出人耳对于频率 f 的感受是呈对数变化的。


http://i.stack.imgur.com/YUH48.gif 页面存档备份,存于互联网档案馆


最后的步骤是计算对数滤波器的能量的离散傅里叶反变换,在此相当于离散余弦反变换(IDCT)。值得注意的是,虽然通常的会有24-26个系数,但我们只保留前12个系数。这是因为丢弃高倒频域值的DCT系数,代表一个类似低通滤波器的概念,可以使信号平滑化,能增进语音处理的性能。


在此过程中可以有很多变化,例如,映射时的窗口的形状和间距。 The 欧洲电信标准协会在2000年初定义了一个可以用在移动电话上的标准MFCC算法.


1.对该信号做傅里叶变换
X=FT{x}
2.根据下面公式算出Y
Y = log ( k = f m 1 f m + 1 | X | 2 B m ) {\displaystyle Y=\log \left(\sum _{k=f_{m-1}}^{f_{m+1}}\left|X\right|^{2}B_{m}\right)}

其中 B m {\displaystyle B_{m}} 是梅尔频率倒频谱的遮罩

B m = { 0 for  k < f m 1  and  k > f m + 1 k f m 1 f m f m 1 for  f m 1 k f m f m + 1 k f m + 1 f m for  f m k f m + 1 {\displaystyle B_{m}={\begin{cases}0&{\mbox{for }}k<f_{m-1}{\mbox{ and }}k>f_{m+1}\\{\cfrac {k-f_{m-1}}{f_{m}-f_{m-1}}}&{\mbox{for }}f_{m-1}\leq k\leq f_{m}\\{\cfrac {f_{m+1}-k}{f_{m+1}-f_{m}}}&{\mbox{for }}f_{m}\leq k\leq f_{m+1}\end{cases}}}

3.对Y做IDCT得 c x {\displaystyle c_{x}}
因为Y是偶函数,故用IDCT(反离散余弦变换)取代IDFT(反离散傅里叶变换)
c x = 1 M m = 1 M Y c o s ( π n ( m 1 / 2 ) M ) {\displaystyle c_{x}={\frac {1}{M}}\sum _{m=1}^{M}Ycos\left({\cfrac {\pi n(m-1/2)}{M}}\right)}

与原倒频谱的差异
一.log里面因为使用了sum,故等于0的几率变小
二.避免了相位的问题
三.使用IDCT取代IDFT,减少了运算量
四. B m {\displaystyle B_{m}} 随着频率的增加而增宽,该特性符合人类听觉,更适合用来描述语音特征

MFCC主要作为语音识别系统中的特征,这样的系统可以自动识别语音中的数字内容。MFCC同样也用于说话人识别(英语:Speaker Recognition),该技术尝试通过语音该鉴别说话人。

MFCC也被用于语音信息检索(英语:music information retrieval)领域,如流派分类(genre classification)、音频相似性计算等。


比起倒频谱,梅尔倒频谱更接近人耳对于语音的区别性(因为遮罩 B {\displaystyle B} )
c x , c x , . . . , c x {\displaystyle c_{x},c_{x},...,c_{x}} ,MFCCs的前13项足以描述语音特征

MFCC特征在加性噪声的情况下并不稳定,因此在语音识别系统中通常要对其进行归一化处理(normalise)以降低噪声的影响。一些研究人员对MFCC算法进行修改以提升其强健性,如在进行DCT之前将log-mel-amplitudes提升到一个合适的能量(2到3之间),以此来降低低能量成分的影响.

相关

  • 人类自愿灭绝运动人类自愿灭绝运动(英语:Voluntary Human Extinction Movement,简称VHEMT)是一场号召所有人放弃生育,逐步实现自愿性人类灭绝的环保运动。运动的支持者认为人类灭绝可以防止环境恶
  • 棕榈油棕榈油又名棕油,是一种对棕榈科油棕属植物油泛称,来自油棕(Elaeis guineensis)的果实。5000年前人类就已经开始使用这种油了。现在马来西亚和印尼是世界上最主要的棕榈油生产国
  • 大波士顿地区大波士顿是指马萨诸塞州紧靠波士顿的地区。都会区总人口约440万,列美国第11位。人口普查办公室按照美国行政管理和预算局的基于核心的统计区域(英语:Core Based Statistical Ar
  • 新货币的引入地产抵押马克又称为地租马克 (Rentenmark) ,是于1923年11月在德国推出的货币,用以遏制当时的恶性通货膨胀。它取代了因通货膨胀而一文不值的纸马克 (Papiermark),但只是作为暂
  • 大卫克洛科特大卫克洛科特国家森林(英语:Davy Crockett National Forest)位于69号美国国道旁边、德克萨斯州拉夫金西侧、克洛科特东侧,由美国农业部下属的美国国家森林局管辖,行政中心位于拉
  • 投资学投资学研究如何把个人、机构的有限资源分配到诸如股票、国债、不动产等(金融)资产上,以获得合理的现金流量和风险-收益特征。其核心内容就是以效用最大化准则为指导,获得个人财
  • 岩本惠理子岩本惠理子(岩本えり子,1952年-2008年10月19日,旧姓桑田),日本女性作词家。出生于神奈川县茅崎市。弟弟桑田佳祐是日本著名乐团南方之星的主唱。惠理子小时候,就因为父母工作繁忙,不
  • 通钢事件通钢事件,又称通钢7.24事件,指2009年7月24日,中国吉林省通化市通化钢铁集团股份有限公司(简称“通钢”)部分职工反对国有企业私有化的大规模群体性事件。该事件导致当天工厂停产,
  • 冯参冯参(前1世纪-前6年),字叔平,上党郡潞县(今山西省长治市)人,后迁居杜陵(今陕西西安东南)。西汉官员。冯奉世之子。他的姐姐为汉元帝的昭仪冯媛,哥哥冯野王、冯逡。冯参通《尚书》。年轻
  • 村川丰村川丰(日语:村川 豊/むらかわ ゆたか 、1958年1月29日-),日本海上自卫队将领,神奈川县人,2016年至2019年间担任第33任海上幕僚长(海军参谋长),亦为海上自卫队首位后方支援勤务出身的