广义有限元方法

✍ dations ◷ 2025-08-02 21:16:49 #连续介质力学,数值微分方程,偏微分方程

广义有限元方法(英语:Generalized Finite Element Method,GFEM),是基于传统有限元方法(FEM)的一种数值分析方法,能够更加优雅、准确地解决材料交界面和断裂力学等非连续问题。这类问题在划分单元网格时,应用传统有限元方法往往需要使网格边界与非连续界面尽可能重合,带来极大的网格依赖(mesh-dependence)。对于复杂边界问题及形状变化问题(例如拓扑优化(英语:Topology optimization)和裂纹扩展等),传统有限元需要花费大量的时间建立单元网格以及重建网格,同时还需要引入计算量处理裂尖端(crack tips)来避免奇异刚性矩阵。广义有限元正是在这样的背景下诞生,它对传统有限元的形函数(shape functions)进行扩展,在包含非连续的单元网格内使用强化方程(enrichment functions),来准确模拟非连续的物理场,这种方法又可称为扩展有限元(extended finite element method,XFEM)。

非连续性,在有限元方法中的定义,指物理场量或其梯度在极小的区间内发生了极大的改变,其中“极小的区间”是相对于观察定义域而言,“物理场量“包括位移场(displacement field)、温度场(temperature field)、势场(potential field)等。物理场量的非连续往往被称为强非连续(strong discontinuities),其梯度的非连续被称为弱非连续(weak discontinuities),前者的表现方式包括断裂力学中裂缝两边的位移差,后者可举例为复合材料受力时在材料交界面的位移梯度差或是位移转折(kink)。

非连续问题的建模方法,可从基本原理上分为两类。第一类方法依赖于多项式近似空间(polynomaial approximation spaces)和单元网格与非连续界面的重合程度。其中最高效的多项式近似空间构造方法即为传统有限元方法,同时还有一些无网格法(英语:meshfree method)给多项式近似空间的构造带来不同的可行性。然而该类方法在处理复杂边界问题时,需要花费大量的时间建立单元网格,对于形状变化问题(例如拓扑优化和裂纹扩展等),求解过程中重建网格不可避免,对于断裂力学还需要引入计算量处理裂尖端来避免奇异刚性矩阵,给求解过程带来极大不便,求解问题被严重限制。即便如此,在广义有限元未被推出时代,传统有限元被广泛用在分析非连续问题上,尤其在土木工程中对河床、片岩、叶理、节理、裂纹对管道及地基等基础设施建造的影响分析中起到重要作用。

随着计算机硬件的提升,工程学上对力学建模的精确程度要求逐渐提高,又由于传统有限元分析非连续问题带来的种种复杂性,广义有限元应运而生。这就属于非连续问题的第二种建模方法——强化有限元多项式近似空间,使得非连续的建模可以独立于单元网格。这种方法在传统有限元的公式中,加入一项特殊的函数,称为强化项(enrichment),该强化项包含解中非连续性的信息,即物理场或其梯度的在非连续界面两端的差值,详细原理参见下一章节。该概念基于有限元单位分解法(英语:partition of unity)(partition of unity method),最初于1995年J.M. Melenk的博士论文中被提出,随后Melenk与他的博士导师、有限元领域的地基人物Ivo Babuška(英语:Ivo Babuška)于1996年整理发表。同一时期,另一所学校的博士生Duarte也在毕业论文中发表了相似理论,称为hp云方法(hp cloud method)。随后,广义有限元在断裂力学中的应用立即被深入研究,由Belytschko及其同事延伸成扩展有限元方法,由于最终被证明广义有限元与扩展有限元其实是同样的一种方法,该两个名词可互换使用。广义有限元的重要特性即在于解决了传统有限元中求解过程与单元网格的依赖性,网格的划分可以更加自由,同时,诸如裂纹扩展、拓扑优化、凝固过程(solidification)等涉及到非连续界面不断发生改变的复杂的问题,该方法都能更有效率、更准确地计算。

在广义有限元的基本公式中,第一项与传统有限元完全一致,第二项是其对传统有限元近似空间的扩展,即强化项,此处为了简化,只使用了一项强化项作为说明。

其中 I {\displaystyle I} 为定义域内所有节点的集合; N i {\displaystyle N_{i}} N i {\displaystyle N_{i}^{*}} 是传统有限元中的形函数,他们大部分情况下会相等(这里区别表示是由于,在后期一些高阶广义有限元的发展中,一些研究者曾尝试在这两项中使用不同阶数的形函数);系数 u i {\displaystyle u_{i}} 是标准有限元的节点所对应的自由度(degrees of freedom); a i {\displaystyle a_{i}} 是强化项引入的额外节点自由度,对应强化项作用的强化节点(enriched nodes),即是包含非连续的单元网格的节点。


ψ ( x ) {\displaystyle \psi (x)} 作为该公式中最重要的部分,是结合对解当中非连续性的预了解而建立的强化函数(enrichment function)。 ψ ( x ) {\displaystyle \psi (x)} N i ( x ) {\displaystyle N_{i}^{*}(x)} 的乘积,即运用了传统有限元拉格朗日形函数的单位分解性质(partition of unity property):

使 ψ ( x ) {\displaystyle \psi (x)} 仅仅作用在包含非连续界面的网格单元中。


下面解释最初的广义有限元概念中,使用的强化函数 ψ ( x ) {\displaystyle \psi (x)}

其中, ϕ ( x ) {\displaystyle \phi (x)} 被称为Level set函数,用于描述非连续界面的位置:

Ω {\displaystyle \Omega ^{-}} Ω + {\displaystyle \Omega ^{+}} 是定义域 Ω {\displaystyle \Omega } 被非连续界面分割出的子域。当中 ϕ d ( x ) {\displaystyle \phi _{d}(x)} 是每个点 x {\displaystyle x} 到非连续界面 Γ {\displaystyle \Gamma } 的最短距离:


对于一个一纬杆的弱非连续问题,如果使用1个单元,并给每个节点添加两个强化函数,用上述基本公式构建的广义有限元近似空间,其解 u h {\displaystyle u^{h}} 可用矩阵形式表示为:


虽然广义有限元的网格独立性很大程度上提高了非连续的建模,可它基本公示中的强化项却引入了新的问题。

Abaqus是采用了广义有限元算法的商业有限元软件。

相关

  • N07A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码N07(其它神经系统用药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Co
  • 1442年约前1445年,古埃及法老图特摩斯三世打败了米坦尼国王,夺占米坦尼王国位于幼发拉底河西岸的土地。
  • 荔枝湾荔枝湾(英语:Lychee Bay)是一个河涌,位于广东省广州市荔湾区西关泮塘一带,有二千多年的历史,历史上是有名消夏游乐地,素有小秦淮之称,荔湾区因此而命名。荔枝湾是西关涌(包括上西关涌
  • 约翰·贝内特·芬恩约翰·贝内特·芬恩(英语:John Bennett Fenn,1917年6月15日-2010年12月10日),美国化学家,蛋白质组学先驱。由于对生物大分子的鉴定和结构分析质谱法方法的研究,与田中耕一、库尔特·
  • 让-弗朗索瓦·商博良让-弗朗索瓦·商博良(法语:Jean-François Champollion,1790年12月23日—1832年3月4日),又译尚波里庸、尚皮隆,是法国著名历史学家、语言学家、埃及学家,是第一位识破古埃及象形文
  • PlayStation 3硬件PlayStation 3的硬件包括本体内部硬件系统及各种外围设备,例如 DUALSHOCK 3 控制器。除非另有说明,以下规格是基于索尼在2005年E3会议上发布的新闻稿, 以及2006年游戏开发者大
  • 河川敷河川敷(1984年11月18日-),新西兰华人作家,诗人,翻译。生于中国,长期隐居海外。 河川敷的作品中毛利文化与中国古典诽句相结合,成立独特的创作视觉;曾被读者与台湾著名诗人夏宇相提并
  • 李善兰恒等式李善兰恒等式为组合数学中的一个恒等式,由中国清代数学家李善兰于1859年在《垛积比类》一书中首次提出,因此得名。有幂级数和概率两种证明方法。
  • 马恩达马尔里马恩达马尔里(Mandamarri),是印度安得拉邦Adilabad县的一个城镇。总人口66176(2001年)。该地2001年总人口66176人,其中男性33778人,女性32398人;0—6岁人口6929人,其中男3484人,女3445
  • 胡公满胡公满(前1071年-前986年),或称陈胡公,是西周至春秋时代诸侯国陈国的开国君主。妫姓,名满,因封地名为陈氏,在西周所得的谥号胡公。胡公满为舜帝的后代。舜传位给禹之后,其子商均封在