首页 >
概率空间
✍ dations ◷ 2024-11-06 05:04:59 #概率空间
概率空间是概率论的基础。概率的严格定义基于这个概念。概率空间(Ω, F, P)是一个总测度为1的测度空间(即P(Ω)=1).第一项Ω是一个非空集合,有时称作“样本空间”。Ω 的集合元素称作“样本输出”,可写作ω。第二项F是样本空间Ω的幂集的一个非空子集。F的集合元素称为事件Σ。事件Σ是样本空间Ω的子集。集合F必须是一个σ-代数:(Ω, F)合起来称为可测空间。事件就是样本输出的集合,在此集合上可定义其概率。第三项P称为概率,或者概率测度。这是一个从集合F到实数域R的函数,
P
:
F
↦
R
{displaystyle P:;F{mapsto }R}
。每个事件都被此函数赋予一个0和1之间的概率值。概率测度经常以黑体表示,例如
P
{displaystyle mathbb {P} }
或
Q
{displaystyle mathbb {Q} }
,也可用符号"Pr"来表示。离散几率理论仅需要可数集的样本空间
Ω
{displaystyle Omega }
。 几率指的是由几率质量函数
p
:
Ω
→
[
0
,
1
]
{displaystyle p:Omega to }
求得
Ω
{displaystyle Omega }
上的使得
∑
ω
∈
Ω
p
(
ω
)
=
1
{displaystyle textstyle sum _{omega in Omega }p(omega )=1}
的点。
Ω
{displaystyle Omega }
全部的子集合可视为随机事件(也就是
F
=
2
Ω
{displaystyle {mathcal {F}}=2^{Omega }}
为幂集)。几率测度可简写为使用σ-代数
F
=
2
Ω
{displaystyle {mathcal {F}}=2^{Omega }}
能够完整描述样本空间。一般来说,σ-代数相当于一个有限或可数的集合划分
Ω
=
B
1
∪
B
2
∪
…
{displaystyle Omega =B_{1}cup B_{2}cup dots }
,事件A的一般型
A
∈
F
{displaystyle Ain {mathcal {F}}}
且
A
=
B
k
1
∪
B
k
2
∪
…
{displaystyle A=B_{k_{1}}cup B_{k_{2}}cup dots }p
(
ω
)
=
0
{displaystyle p(omega )=0}
是被定义允许的情况但极少使用,因为如此的
ω
{displaystyle omega }
可以安全的从样本空间中移除。如果Ω不可数,存在某些ω使得p(ω) ≠ 0 的情况仍然存在,那些ω称为原子。他们大部分都是可数的集合(有可能为空集合)
,其可能性为所有原子几率的和。如果这个和等于1,那么其他的点可以安全地从样本空间中移除,回归离散模式。反之,如果和少与1(有可能为零)那么几率空间分解成为离散(原子)部分(可能为零),以及非原子部分。若样本空间是关于一个机会均等的抛硬币动作,则样本输出为“正面”或“反面”。事件为:随机变量是一个从Ω映射到另一个集合(通常是实数域R)的函数。 它必须是一个可测函数。比如说,若X是一个实随机变量,则使X为正的样本输出的集合{ω∈Ω:X(ω)>0}是一个事件。为简便起见,{ω∈Ω:X(ω)>0}经常只写作{X>0}。P({X>0})更被简化为P(X>0)。若P(A∩B)=P(A)P(B),则A和B两个事件是独立的。若任何与随机变量X有关的事件和任何与随机变量Y有关的事件独立,则X和Y两个随机变量是独立的。独立这个概念是概率论和测度论分道扬镳的地方。若P(A∩B)=0,则称A和B两个事件互斥或不相交(这个性质要比A∩B=∅弱一些,后者是集合不相交的定义)。若两个事件A和B不相交,则P(A∪B)=P(A)+P(B)。这个性质可以扩展到由(有限个或者可数无限个)事件组成的事件序列。 但不可数无限个事件组成的事件集合对应的概率与集合元素对应概率之和未必相等,例如若Z是正态分布的随机变量,则对任意x有P(Z=x)=0,但是P(Z是实数)=1。事件A∩B的意思是A并且B;事件A∪B的意思是A或者B.
相关
- 海蛇海蛇亚科(学名:Hydrophiinae)包括所有终生生活于海水中的蛇,属于蛇亚目,由远古眼镜蛇进化而来,本科有15属、约50种。在新的分类法中,海蛇亚科被归类于眼镜蛇科之下。海蛇亚科下的蛇
- 让·皮亚杰让·皮亚杰(法语:Jean Piaget,1896年8月9日-1980年9月16日),全名让·威廉·弗里兹·皮亚杰(法语:Jean William Fritz Piaget),瑞士人,是近代最有名的发展心理学家,同时也是哲学家。他的
- 辛伐他汀辛伐他汀(Simvastatin)为一种口服降血脂药物,常见商品名“Zocor”。该品会在运动、节食,和减肥时服用,以避免发生血脂升高。此外辛伐他汀也可降低高心脏病风险者发作的机会。严重
- 世界牛奶日世界牛奶日(英语:World Milk Day)是联合国粮食及农业组织设立的节日,目的是让人们认识到牛奶作为全球性食品的重要性。自2001年以来,每年的6月1日都会有相关活动开展。该节日旨在
- 抑制素激活素(英语:Activin,亦成为激活蛋白或活化素)与抑制素(英语:inhibin)是一种用于抑制卵泡刺激素分泌的与组合的梭氨酸 。参与在月经周期的调节中。抑制素包括一个由二硫键链接起来
- 海外省及大区海外省及大区(法语:département et région ultramarin或Département et région d'outre-mer,简称DROM),常称海外省(法语:département d’outre-mer,简称DOM)或海外大区(法语:Régi
- Opisthokonta后鞭毛生物(学名:Opisthokont)是真核生物的一个范围广泛的主要类群,包括动物和真菌界,以及原生生物的领鞭毛虫门和Mesomycetozoa。基因和超结构的研究都强烈地支持后鞭毛生物会形
- 贝尔法斯特女王大学罗素集团 英联邦大学协会贝尔法斯特女王大学(英语:Queen's University Belfast,简称Queen’s或QUB)是一所位于英国北爱尔兰首府贝尔法斯特的公立研究型大学。女王大学的历史可以
- 性伴侣性伴侣(Sexual partner)指的是一个人的性行为对象,彼此之间的关系不一定是情侣。性伴侣并无性别或是性取向之分。一个人的性伴侣不一定只有一个,性伴侣的身份可能是情人、夫妻、
- 朝永振一郎朝永振一郎(日语:朝永 振一郎/ともなが しんいちろう Tomonaga Shin'ichirō,1906年3月31日-1979年7月8日),日本物理学家,量子电动力学的奠基人之一。他也因为这项贡献与美国物理学