概率空间

✍ dations ◷ 2025-02-23 20:27:17 #概率空间
概率空间是概率论的基础。概率的严格定义基于这个概念。概率空间(Ω, F, P)是一个总测度为1的测度空间(即P(Ω)=1).第一项Ω是一个非空集合,有时称作“样本空间”。Ω 的集合元素称作“样本输出”,可写作ω。第二项F是样本空间Ω的幂集的一个非空子集。F的集合元素称为事件Σ。事件Σ是样本空间Ω的子集。集合F必须是一个σ-代数:(Ω, F)合起来称为可测空间。事件就是样本输出的集合,在此集合上可定义其概率。第三项P称为概率,或者概率测度。这是一个从集合F到实数域R的函数, P : F ↦ R {displaystyle P:;F{mapsto }R} 。每个事件都被此函数赋予一个0和1之间的概率值。概率测度经常以黑体表示,例如 P {displaystyle mathbb {P} } 或 Q {displaystyle mathbb {Q} } ,也可用符号"Pr"来表示。离散几率理论仅需要可数集的样本空间 Ω {displaystyle Omega } 。 几率指的是由几率质量函数 p : Ω → [ 0 , 1 ] {displaystyle p:Omega to } 求得 Ω {displaystyle Omega } 上的使得 ∑ ω ∈ Ω p ( ω ) = 1 {displaystyle textstyle sum _{omega in Omega }p(omega )=1} 的点。 Ω {displaystyle Omega } 全部的子集合可视为随机事件(也就是 F = 2 Ω {displaystyle {mathcal {F}}=2^{Omega }} 为幂集)。几率测度可简写为使用σ-代数 F = 2 Ω {displaystyle {mathcal {F}}=2^{Omega }} 能够完整描述样本空间。一般来说,σ-代数相当于一个有限或可数的集合划分 Ω = B 1 ∪ B 2 ∪ … {displaystyle Omega =B_{1}cup B_{2}cup dots } ,事件A的一般型 A ∈ F {displaystyle Ain {mathcal {F}}} 且 A = B k 1 ∪ B k 2 ∪ … {displaystyle A=B_{k_{1}}cup B_{k_{2}}cup dots }p ( ω ) = 0 {displaystyle p(omega )=0} 是被定义允许的情况但极少使用,因为如此的 ω {displaystyle omega } 可以安全的从样本空间中移除。如果Ω不可数,存在某些ω使得p(ω) ≠ 0 的情况仍然存在,那些ω称为原子。他们大部分都是可数的集合(有可能为空集合) ,其可能性为所有原子几率的和。如果这个和等于1,那么其他的点可以安全地从样本空间中移除,回归离散模式。反之,如果和少与1(有可能为零)那么几率空间分解成为离散(原子)部分(可能为零),以及非原子部分。若样本空间是关于一个机会均等的抛硬币动作,则样本输出为“正面”或“反面”。事件为:随机变量是一个从Ω映射到另一个集合(通常是实数域R)的函数。 它必须是一个可测函数。比如说,若X是一个实随机变量,则使X为正的样本输出的集合{ω∈Ω:X(ω)>0}是一个事件。为简便起见,{ω∈Ω:X(ω)>0}经常只写作{X>0}。P({X>0})更被简化为P(X>0)。若P(A∩B)=P(A)P(B),则A和B两个事件是独立的。若任何与随机变量X有关的事件和任何与随机变量Y有关的事件独立,则X和Y两个随机变量是独立的。独立这个概念是概率论和测度论分道扬镳的地方。若P(A∩B)=0,则称A和B两个事件互斥或不相交(这个性质要比A∩B=∅弱一些,后者是集合不相交的定义)。若两个事件A和B不相交,则P(A∪B)=P(A)+P(B)。这个性质可以扩展到由(有限个或者可数无限个)事件组成的事件序列。 但不可数无限个事件组成的事件集合对应的概率与集合元素对应概率之和未必相等,例如若Z是正态分布的随机变量,则对任意x有P(Z=x)=0,但是P(Z是实数)=1。事件A∩B的意思是A并且B;事件A∪B的意思是A或者B.

相关

  • 氧气氧气(英语:Oxygen, Dioxygen,分子式:O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助
  • 三世纪危机三世纪危机,又名军事无政府状态或帝国危机(英语:Crisis of the Third Century),是指罗马帝国在235年(皇帝亚历山大·塞维鲁被杀)至284年(皇帝戴克里先即位)间受到三项同时发生的危机
  • 主题词索引典(英语:thesaurus),也称为叙词表或类语辞典,同义词辞典,是主题分析的一种实作方法。所谓主题分析是指辨识某作品之知识内涵,分析其特性,并使用某些文字、代号描述其主题。主题
  • 一部分个别教会(英语:Particular Church;拉丁语:ecclesia particularis)或称地区教会,是天主教会的一种分类。根据天主教会圣统制和法典,在唯一天主教会的最高权力(即教宗及世界主教团)之下
  • 凝结凝结(英语:condensation),或称凝析,是气体遇冷而变成液体,如水蒸气遇冷变成水。温度越低,凝结速度越快。在水循环中常提到凝结。像空气中的水蒸气接触到其他固体、液体表面,或是接触
  • 双酚A双酚A(Bisphenol A,缩写为BPA),台灣多稱之為酚甲烷。一种化工原料,是已知的内分泌干扰素(环境荷尔蒙)。它是一种有机化合物,具有两个酚官能团。双酚A被用于合成聚碳酸酯塑料和环氧树
  • 安东尼奥·加西亚-贝利多安东尼奥·加西亚-贝利多(西班牙语:Antonio García-Bellido,1936年4月30日-),西班牙生物学家。他在发育生物学界极具影响力。
  • Nsub2/subHspan style=line-height:1.2em;text-indent:0em;display:inline-bloc肼基钠是一种无机化合物,化学式为NaHNNH2。肼基钠可由氨基钠和无水肼在乙醚或液氨中反应得到。或由氢化钠和肼在四氢呋喃中反应得到。钠和肼的反应除了生成肼基钠外,还有和氨
  • CGH比较基因组杂交(英语:Comparative genomic hybridization,CGH)是一种分子细胞遗传学方法,在不培养细胞的情况下,分析相对于参照样品,测试样品的DNA中拷贝数变异(英语:Copy-number var
  • 罗汉松属罗汉松属(学名:Podocarpus)是罗汉松科下的一个属,为常绿乔木或灌木植物。该属共有约108种,分布于东亚和南半球的温带、亚热带和热带地区。