概率空间

✍ dations ◷ 2025-06-28 04:18:26 #概率空间
概率空间是概率论的基础。概率的严格定义基于这个概念。概率空间(Ω, F, P)是一个总测度为1的测度空间(即P(Ω)=1).第一项Ω是一个非空集合,有时称作“样本空间”。Ω 的集合元素称作“样本输出”,可写作ω。第二项F是样本空间Ω的幂集的一个非空子集。F的集合元素称为事件Σ。事件Σ是样本空间Ω的子集。集合F必须是一个σ-代数:(Ω, F)合起来称为可测空间。事件就是样本输出的集合,在此集合上可定义其概率。第三项P称为概率,或者概率测度。这是一个从集合F到实数域R的函数, P : F ↦ R {displaystyle P:;F{mapsto }R} 。每个事件都被此函数赋予一个0和1之间的概率值。概率测度经常以黑体表示,例如 P {displaystyle mathbb {P} } 或 Q {displaystyle mathbb {Q} } ,也可用符号"Pr"来表示。离散几率理论仅需要可数集的样本空间 Ω {displaystyle Omega } 。 几率指的是由几率质量函数 p : Ω → [ 0 , 1 ] {displaystyle p:Omega to } 求得 Ω {displaystyle Omega } 上的使得 ∑ ω ∈ Ω p ( ω ) = 1 {displaystyle textstyle sum _{omega in Omega }p(omega )=1} 的点。 Ω {displaystyle Omega } 全部的子集合可视为随机事件(也就是 F = 2 Ω {displaystyle {mathcal {F}}=2^{Omega }} 为幂集)。几率测度可简写为使用σ-代数 F = 2 Ω {displaystyle {mathcal {F}}=2^{Omega }} 能够完整描述样本空间。一般来说,σ-代数相当于一个有限或可数的集合划分 Ω = B 1 ∪ B 2 ∪ … {displaystyle Omega =B_{1}cup B_{2}cup dots } ,事件A的一般型 A ∈ F {displaystyle Ain {mathcal {F}}} 且 A = B k 1 ∪ B k 2 ∪ … {displaystyle A=B_{k_{1}}cup B_{k_{2}}cup dots }p ( ω ) = 0 {displaystyle p(omega )=0} 是被定义允许的情况但极少使用,因为如此的 ω {displaystyle omega } 可以安全的从样本空间中移除。如果Ω不可数,存在某些ω使得p(ω) ≠ 0 的情况仍然存在,那些ω称为原子。他们大部分都是可数的集合(有可能为空集合) ,其可能性为所有原子几率的和。如果这个和等于1,那么其他的点可以安全地从样本空间中移除,回归离散模式。反之,如果和少与1(有可能为零)那么几率空间分解成为离散(原子)部分(可能为零),以及非原子部分。若样本空间是关于一个机会均等的抛硬币动作,则样本输出为“正面”或“反面”。事件为:随机变量是一个从Ω映射到另一个集合(通常是实数域R)的函数。 它必须是一个可测函数。比如说,若X是一个实随机变量,则使X为正的样本输出的集合{ω∈Ω:X(ω)>0}是一个事件。为简便起见,{ω∈Ω:X(ω)>0}经常只写作{X>0}。P({X>0})更被简化为P(X>0)。若P(A∩B)=P(A)P(B),则A和B两个事件是独立的。若任何与随机变量X有关的事件和任何与随机变量Y有关的事件独立,则X和Y两个随机变量是独立的。独立这个概念是概率论和测度论分道扬镳的地方。若P(A∩B)=0,则称A和B两个事件互斥或不相交(这个性质要比A∩B=∅弱一些,后者是集合不相交的定义)。若两个事件A和B不相交,则P(A∪B)=P(A)+P(B)。这个性质可以扩展到由(有限个或者可数无限个)事件组成的事件序列。 但不可数无限个事件组成的事件集合对应的概率与集合元素对应概率之和未必相等,例如若Z是正态分布的随机变量,则对任意x有P(Z=x)=0,但是P(Z是实数)=1。事件A∩B的意思是A并且B;事件A∪B的意思是A或者B.

相关

  • 胸腺嘧啶胸腺嘧啶(英语:Thymine,简写为 T),又称为5-甲基尿嘧啶(英语:5-methyluracil),为嘧啶类碱基,是形成DNA核苷酸中四种碱基(G-C-A-T)的其中一种。如其别名,胸腺嘧啶是尿嘧啶(U)5号位碳原子上甲基化
  • 子宫子宫,中医学常称胞宫,又称女子胞,是中医的奇恒之腑之一。位于小腹正中,膀胱之后,直肠之前,下口连接阴道,为女性发生月经和孕育胎儿的器官。子宫是雌性哺乳动物的生殖器官中,用来让胚
  • 路易吉·伽伐尼路易吉·阿洛伊西奥·伽伐尼(意大利文:Luigi Aloisio Galvani, 拉丁文:Aloysius Galvani)1737年9月9日-1798年12月4日)是意大利医生、物理学家与哲学家,现代产科学的先驱者。他在意
  • 阿基米德阿基米德(希腊语:´Αρχιμήδης;前287年-前212年),希腊化时代的数学家、物理学家、发明家、工程师、天文学家。出生于西西里岛的锡拉库扎,据说他在亚历山大求学时期,发明了阿
  • 伊本·泰米伊哈伊本·泰米叶(Taqī ad-Dīn Aḥmad ibn Taymiyyah,Arabic:تقي الدين أحمد ابن تيمية)是一个争议性的伊斯兰黄金时代逊尼派神学家、法学家、逻辑学家(英语:Lo
  • 生化生物化学(英语:biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核
  • 未成年人未成年人(未成年者或未成人)是一个社会学或者法学的概念,即是还没有成年的人。在很多国家的法律上,未成年人即是未满法定成年年龄18岁的人。不同的社会或地区对未成年人在心理状
  • 格拉布罗伯特·格拉布 (英语:Robert H. Grubbs,1942年2月27日-),美国化学家,诺贝尔奖获得者。出生于肯塔基州的凯尔弗特市,靠近Possum Trot,在佛罗里达大学学化学,获得学士、硕士学位,而后在
  • 鱼粉鱼粉是把鱼可供人食用的部分除去后、或者缺乏市场价值的全鱼,经加工而成的商业产品。鱼粉呈棕色粉末状或饼状,具体而言是把上述的原料挤压去除油分而成。鱼粉的用途在于其含丰
  • 五脏脏腑,是中医对内脏的总称,通称五脏六腑。根据《素问‧五脏别论篇》,“脏”指的是人体内的五脏,即:肝、心、脾、肺、肾(加上心包即为六脏),主要功能为生化和蓄存精气;以及六腑,即:胆、小