概率空间

✍ dations ◷ 2025-07-19 06:50:53 #概率空间
概率空间是概率论的基础。概率的严格定义基于这个概念。概率空间(Ω, F, P)是一个总测度为1的测度空间(即P(Ω)=1).第一项Ω是一个非空集合,有时称作“样本空间”。Ω 的集合元素称作“样本输出”,可写作ω。第二项F是样本空间Ω的幂集的一个非空子集。F的集合元素称为事件Σ。事件Σ是样本空间Ω的子集。集合F必须是一个σ-代数:(Ω, F)合起来称为可测空间。事件就是样本输出的集合,在此集合上可定义其概率。第三项P称为概率,或者概率测度。这是一个从集合F到实数域R的函数, P : F ↦ R {displaystyle P:;F{mapsto }R} 。每个事件都被此函数赋予一个0和1之间的概率值。概率测度经常以黑体表示,例如 P {displaystyle mathbb {P} } 或 Q {displaystyle mathbb {Q} } ,也可用符号"Pr"来表示。离散几率理论仅需要可数集的样本空间 Ω {displaystyle Omega } 。 几率指的是由几率质量函数 p : Ω → [ 0 , 1 ] {displaystyle p:Omega to } 求得 Ω {displaystyle Omega } 上的使得 ∑ ω ∈ Ω p ( ω ) = 1 {displaystyle textstyle sum _{omega in Omega }p(omega )=1} 的点。 Ω {displaystyle Omega } 全部的子集合可视为随机事件(也就是 F = 2 Ω {displaystyle {mathcal {F}}=2^{Omega }} 为幂集)。几率测度可简写为使用σ-代数 F = 2 Ω {displaystyle {mathcal {F}}=2^{Omega }} 能够完整描述样本空间。一般来说,σ-代数相当于一个有限或可数的集合划分 Ω = B 1 ∪ B 2 ∪ … {displaystyle Omega =B_{1}cup B_{2}cup dots } ,事件A的一般型 A ∈ F {displaystyle Ain {mathcal {F}}} 且 A = B k 1 ∪ B k 2 ∪ … {displaystyle A=B_{k_{1}}cup B_{k_{2}}cup dots }p ( ω ) = 0 {displaystyle p(omega )=0} 是被定义允许的情况但极少使用,因为如此的 ω {displaystyle omega } 可以安全的从样本空间中移除。如果Ω不可数,存在某些ω使得p(ω) ≠ 0 的情况仍然存在,那些ω称为原子。他们大部分都是可数的集合(有可能为空集合) ,其可能性为所有原子几率的和。如果这个和等于1,那么其他的点可以安全地从样本空间中移除,回归离散模式。反之,如果和少与1(有可能为零)那么几率空间分解成为离散(原子)部分(可能为零),以及非原子部分。若样本空间是关于一个机会均等的抛硬币动作,则样本输出为“正面”或“反面”。事件为:随机变量是一个从Ω映射到另一个集合(通常是实数域R)的函数。 它必须是一个可测函数。比如说,若X是一个实随机变量,则使X为正的样本输出的集合{ω∈Ω:X(ω)>0}是一个事件。为简便起见,{ω∈Ω:X(ω)>0}经常只写作{X>0}。P({X>0})更被简化为P(X>0)。若P(A∩B)=P(A)P(B),则A和B两个事件是独立的。若任何与随机变量X有关的事件和任何与随机变量Y有关的事件独立,则X和Y两个随机变量是独立的。独立这个概念是概率论和测度论分道扬镳的地方。若P(A∩B)=0,则称A和B两个事件互斥或不相交(这个性质要比A∩B=∅弱一些,后者是集合不相交的定义)。若两个事件A和B不相交,则P(A∪B)=P(A)+P(B)。这个性质可以扩展到由(有限个或者可数无限个)事件组成的事件序列。 但不可数无限个事件组成的事件集合对应的概率与集合元素对应概率之和未必相等,例如若Z是正态分布的随机变量,则对任意x有P(Z=x)=0,但是P(Z是实数)=1。事件A∩B的意思是A并且B;事件A∪B的意思是A或者B.

相关

  • 建筑设备建筑设备指所有适用于房间和建筑的技术措施,包括经营场所和公共场所的能源(采暖,照明)和供应(水,空气)或废物排放(污水,垃圾)。其目的是对居民和用户提供建筑物的正常使用和必要的安全
  • 胃切除术胃切除术(gastrectomy)为胃的一部分或全部的切除手术治疗法。除了胃肿瘤以外,主要还是针对胃溃疡、胃损伤等病症所行使的医疗行为。胃切除术是要进行全身麻醉的手术、切除范围
  • 山梨大学山梨大学,简称梨大,是一所本部位于山梨县的日本国立大学,前身是创立于18世纪的徽典馆。2002年,原山梨大学与原山梨医科大学合并,成为现在的山梨大学。梨大拥有日本唯一的葡萄酒研
  • 两性异性两性异形(性别二态性)是指同一物种性两性之间的差别。最基本的两性异形是生殖构造(第一性征),但因为所有有性别的生物都有生殖构造的差异,一般来说两性异形主要用在指其他与生殖没
  • TMP胸苷单磷酸(Thymidine monophosphate,TMP)是一种核苷酸,可见于DNA分子中,含有磷酸基团、五碳糖,以及碱基胸腺嘧啶。
  • 首席部长 (印度)首席部长是印度共和国29个邦和2个联邦属地(德里与本地治里)由选举产生的政府首脑的官衔。根据《印度宪法》,印度各地方总督(英语:Governors of states of India)在名义上为其元首,
  • 圣瓦西里主教座堂圣瓦西里主教座堂(俄语:Собор Василия Блаженного,全称 Собор Покрова пресвятой Богородицы, что на Рву,意指
  • 尹成模尹成模(韩语:윤성모、日语:ユン・ソンモ,1987年6月15日-),又翻译作尹晟模,韩国男歌手,男子偶像团体SUPERNOVA(旧名超新星)的前主唱,2015年出版首张迷你专辑《Tiramisu love》在日本SOLO
  • 郑兰荪郑兰荪(1954年10月22日-),福建厦门人,中国无机化学家,厦门大学化学系教授、博士生导师、中科院院士、全国政协常委,福建省政协副主席、民盟中央副主席。福建省科学技术协会主席。郑
  • font color=white加拿大/font下面是加拿大各大学的列表: