随机博弈

✍ dations ◷ 2024-12-22 19:48:18 #随机博弈

随机博弈(英语:stochastic game),或称随机赛局、随机对局,在博弈论中是一类由一个或多个参与者所进行的、具有状态概率转移的动态博弈,由劳埃德·夏普利(Lloyd Shapley)于20世纪50年代初期提出。

这类博弈由一系列阶段组成。在博弈中每一阶段的起始,博弈处于某种特定状态。每一参与者选择某种行动,然后会获得取决于当前状态和所选择行动的收益。之后,博弈发展到下一阶段,处于一个新的随机状态,这一随机状态的分布取决于先前状态和各位参与者选择的行动。在新状态中重复上述过程,然后博弈继续进行有限或无限个数的阶段。一个参与者得到的总收益常用各阶段收益的贴现和,或是各阶段收益平均值的下极限来计算。

随机博弈的组成部分有:有限参与者集 I {\displaystyle I} ;状态空间 M {\displaystyle M} (可以是有限集,也可以是可测空间 ( M , A ) {\displaystyle (M,{\mathcal {A}})} );对于每一参与者 i I {\displaystyle i\in I} ,存在行动集 S i {\displaystyle S^{i}\,} (可以是有限集,也可以是可测空间 ( S i , S i ) {\displaystyle (S^{i},{\mathcal {S}}^{i})} ); P {\displaystyle P} M × S {\displaystyle M\times S} M {\displaystyle M} 的转移概率,其中 S = × i I S i {\displaystyle S=\times _{i\in I}S^{i}} 是行动组合, P ( A m , s ) {\displaystyle P(A\mid m,s)} 是下一状态处于 A {\displaystyle A} 中的概率,而 A {\displaystyle A} 给定了当前状态 m {\displaystyle m} 和当前行动组合 s {\displaystyle s} ;从 M × S {\displaystyle M\times S} R I {\displaystyle R^{I}\,} 的收益函数 g {\displaystyle g} ,其中 g {\displaystyle g} 的第 i {\displaystyle i} 个坐标 g i {\displaystyle g^{i}\,} 是参与者 i {\displaystyle i} 的收益,而 g i {\displaystyle g^{i}\,} 是状态 m {\displaystyle m} 和行动组合 s {\displaystyle s} 的函数。

博弈以某个初始状态 m 1 {\displaystyle m_{1}} 开始。在阶段 t {\displaystyle t} 中,参与者最先观测到 m t {\displaystyle m_{t}} ,同时选择行动 s t i S i {\displaystyle s_{t}^{i}\in S^{i}} ,然后观测到行动组合 s t = ( s t i ) i {\displaystyle s_{t}=(s_{t}^{i})_{i}} ,然后以概率 P ( m t , s t ) {\displaystyle P(\cdot \mid m_{t},s_{t})} 自然选择 m t + 1 {\displaystyle m_{t+1}} 。一次随机博弈 m 1 , s 1 , , m t , s t , {\displaystyle m_{1},s_{1},\ldots ,m_{t},s_{t},\ldots } 定义了一个收益流 g 1 , g 2 , {\displaystyle g_{1},g_{2},\ldots } ,其中 g t = g ( m t , s t ) {\displaystyle g_{t}=g(m_{t},s_{t})\,}

下面给出随机博弈的一个例子:

当前有任意个装着球的桶,每个桶中球的数目也是任意的,两位参与者轮流从中取出球,且需要遵守如下规则:

贴现因子为 λ {\displaystyle \lambda } 0 < λ 1 {\displaystyle 0<\lambda \leq 1} )的贴现博弈 Γ λ {\displaystyle \Gamma _{\lambda }} 中,参与者 i {\displaystyle i} 的收益是 λ t = 1 ( 1 λ ) t 1 g t i {\displaystyle \lambda \sum _{t=1}^{\infty }(1-\lambda )^{t-1}g_{t}^{i}} n {\displaystyle n} 阶段博弈中,参与者 i {\displaystyle i} 的收益是 g ¯ n i := 1 n t = 1 n g t i {\displaystyle {\bar {g}}_{n}^{i}:={\frac {1}{n}}\sum _{t=1}^{n}g_{t}^{i}}

若存在有限多个状态和行动的二人零和博弈 Γ n {\displaystyle \Gamma _{n}} (各自是 Γ λ {\displaystyle \Gamma _{\lambda }} )的值为 v n ( m 1 ) {\displaystyle v_{n}(m_{1})} (各自是 v λ ( m 1 ) {\displaystyle v_{\lambda }(m_{1})} ),则 v n ( m 1 ) {\displaystyle v_{n}(m_{1})} n {\displaystyle n} 趋于无穷时收敛到一个极限,且 v λ ( m 1 ) {\displaystyle v_{\lambda }(m_{1})} λ {\displaystyle \lambda } 趋于 0 {\displaystyle 0} 时收敛到相同的极限。这一结论已被杜鲁门·彪利(Truman Bewley)和艾朗·克尔伯格(Elon Kohlberg)于1976年证明。

非贴现博弈 Γ {\displaystyle \Gamma _{\infty }} 中,参与者 i {\displaystyle i} 的收益是各阶段收益平均值的极限。在定义二人零和博弈 Γ {\displaystyle \Gamma _{\infty }} 的值与非零和博弈 Γ {\displaystyle \Gamma _{\infty }} 的均衡收益之前需要注意一些事情:若对于每一 ε > 0 {\displaystyle \varepsilon >0} 都有正整数 N {\displaystyle N} 、参与者1的策略 σ ε {\displaystyle \sigma _{\varepsilon }} 和参与者2的策略 τ ε {\displaystyle \tau _{\varepsilon }} ,二人零和随机博弈 Γ {\displaystyle \Gamma _{\infty }} 的一致值(uniform value) v {\displaystyle v_{\infty }} 存在,这样对于每一 σ {\displaystyle \sigma } τ {\displaystyle \tau } 和每一 n N {\displaystyle n\geq N} ,博弈中由 σ ε {\displaystyle \sigma _{\varepsilon }} τ {\displaystyle \tau } 定义的概率的 g ¯ n i {\displaystyle {\bar {g}}_{n}^{i}} 期望至少为 v ε {\displaystyle v_{\infty }-\varepsilon } ,由 σ {\displaystyle \sigma } τ ε {\displaystyle \tau _{\varepsilon }} 定义的概率的 g ¯ n i {\displaystyle {\bar {g}}_{n}^{i}} 期望至多为 v + ε {\displaystyle v_{\infty }+\varepsilon } 。让·弗朗索瓦·梅顿斯(Jean Francois Mertens)和亚伯拉罕·奈曼(Abraham Neyman)于1981年证明二人零和随机博弈具有一致值。

若参与者数量有限且行动集和状态集有限,则有限阶段随机博弈总有纳什均衡,对于总收益是贴现和的无限多阶段随机博弈也是如此。尼古拉斯·维勒(Nicolas Vieille)已经证明当总收益是各阶段收益平均值的下极限时,所有具有有限状态和行动空间的二人随机博弈都有近似纳什均衡。不过,当参与者多于2名时,随机博弈是否存在这类均衡仍是一个极具挑战性的开放性问题。

随机博弈在经济学、演化生物学和计算机网络中都有应用。事实上,随机博弈是重复博弈这类每一阶段都处于相同状态的博弈的一般化形式。

有关随机博弈的最全面的参考书籍是奈曼和索林编著的文集。菲拉尔和乌瑞兹所著的书籍更为基础,书中提供了马尔可夫决策过程(MDP)和二人随机博弈理论的严密的统一处理方法。他们创造了Competitive MDPs这一术语来概括一人和二人随机博弈。

相关

  • 心脏超音波超声心动图,是一种心脏超声波检查,它使用标准的超声波技术显示心脏的二维图片。现在最新的超声诊断系统采用三维及时成像。耗时大约15-20分钟,甚至更长。除了产生心血管系统的
  • 荷兰语联盟荷兰语联盟(荷兰语: Nederlandse Taalunie 帮助·信息,缩写为NTU)是讨论关于荷兰语事项的国际机构,由荷兰与比利时在1980年9月9日于布鲁塞尔签定的条约而建立,继承于一个两国在二
  • Merriam-Webster Dictionary梅里亚姆-韦伯斯特公司(亦译“梅里厄姆-韦伯斯特”;英文:Merriam-Webster)是美国权威的词典出版机构,它出版的书籍——尤其是词典,在中文里往往被称作“韦氏词典”。梅里亚姆-韦伯
  • 蒙古通讯社蒙古通讯社(中文简称“蒙通社”,蒙古语:Монцамэ)是蒙古国的国家通讯社。蒙古通讯社是蒙古国的官方通讯社,创建于1921年,1957年10月改成国家通讯社。该社和世界各大通讯社如
  • 工业市工业市或工业城(英语:Industry),中文又音译为因达斯特里,是美国加利福尼亚州洛杉矶县下属的一座城市。建市于1957年6月18日,面积 大约为11.78平方英里 (30.5平方公里)。根据2010年
  • 费尔菲尔德县费尔菲尔德县(英语:Fairfield County)是美国康乃狄克州西南部的一个县,西邻纽约州。面积2,168平方公里。根据美国2000年人口普查,共有人口882,567。与本州其余七县一样,本县既无县
  • 达沃区达沃区(或称大堡区)(Davao Region),是菲律宾南部的行政大区,位于棉兰老岛东部,临菲律宾海和达沃湾,包括北达沃省、东达沃省、南达沃省和康波斯特拉谷省,总面积20244平方公里,人口41566
  • 远东红点鲑远东红点鲑,又名白斑红点鲑为辐鳍鱼纲鲑形目鲑科的其中一种。本鱼分布于西北太平洋区,包括俄罗斯远东地区、日本、朝鲜半岛、中国东北地区、美国阿拉斯加州,属洄游性鱼类。其多
  • 临平临平街道是中国浙江省杭州市余杭区下辖的一个街道,余杭区区政府驻地。临平街道办事处驻邱山大街。临平街道辖23个社区,分别是:西大街社区、工农新村社区、星火社区、荷花塘社区
  • 灶头灶、炉灶、厨灶或灶头是一种固定的烹饪的设施,透过加热炊具来达到将食物变熟的目的。中文语境中有时也以灶来指窑,例如佛山的南风古灶。早期的灶多是粘土制灶的,用柴火来加热。