随机博弈

✍ dations ◷ 2025-03-06 03:22:33 #随机博弈

随机博弈(英语:stochastic game),或称随机赛局、随机对局,在博弈论中是一类由一个或多个参与者所进行的、具有状态概率转移的动态博弈,由劳埃德·夏普利(Lloyd Shapley)于20世纪50年代初期提出。

这类博弈由一系列阶段组成。在博弈中每一阶段的起始,博弈处于某种特定状态。每一参与者选择某种行动,然后会获得取决于当前状态和所选择行动的收益。之后,博弈发展到下一阶段,处于一个新的随机状态,这一随机状态的分布取决于先前状态和各位参与者选择的行动。在新状态中重复上述过程,然后博弈继续进行有限或无限个数的阶段。一个参与者得到的总收益常用各阶段收益的贴现和,或是各阶段收益平均值的下极限来计算。

随机博弈的组成部分有:有限参与者集 I {\displaystyle I} ;状态空间 M {\displaystyle M} (可以是有限集,也可以是可测空间 ( M , A ) {\displaystyle (M,{\mathcal {A}})} );对于每一参与者 i I {\displaystyle i\in I} ,存在行动集 S i {\displaystyle S^{i}\,} (可以是有限集,也可以是可测空间 ( S i , S i ) {\displaystyle (S^{i},{\mathcal {S}}^{i})} ); P {\displaystyle P} M × S {\displaystyle M\times S} M {\displaystyle M} 的转移概率,其中 S = × i I S i {\displaystyle S=\times _{i\in I}S^{i}} 是行动组合, P ( A m , s ) {\displaystyle P(A\mid m,s)} 是下一状态处于 A {\displaystyle A} 中的概率,而 A {\displaystyle A} 给定了当前状态 m {\displaystyle m} 和当前行动组合 s {\displaystyle s} ;从 M × S {\displaystyle M\times S} R I {\displaystyle R^{I}\,} 的收益函数 g {\displaystyle g} ,其中 g {\displaystyle g} 的第 i {\displaystyle i} 个坐标 g i {\displaystyle g^{i}\,} 是参与者 i {\displaystyle i} 的收益,而 g i {\displaystyle g^{i}\,} 是状态 m {\displaystyle m} 和行动组合 s {\displaystyle s} 的函数。

博弈以某个初始状态 m 1 {\displaystyle m_{1}} 开始。在阶段 t {\displaystyle t} 中,参与者最先观测到 m t {\displaystyle m_{t}} ,同时选择行动 s t i S i {\displaystyle s_{t}^{i}\in S^{i}} ,然后观测到行动组合 s t = ( s t i ) i {\displaystyle s_{t}=(s_{t}^{i})_{i}} ,然后以概率 P ( m t , s t ) {\displaystyle P(\cdot \mid m_{t},s_{t})} 自然选择 m t + 1 {\displaystyle m_{t+1}} 。一次随机博弈 m 1 , s 1 , , m t , s t , {\displaystyle m_{1},s_{1},\ldots ,m_{t},s_{t},\ldots } 定义了一个收益流 g 1 , g 2 , {\displaystyle g_{1},g_{2},\ldots } ,其中 g t = g ( m t , s t ) {\displaystyle g_{t}=g(m_{t},s_{t})\,}

下面给出随机博弈的一个例子:

当前有任意个装着球的桶,每个桶中球的数目也是任意的,两位参与者轮流从中取出球,且需要遵守如下规则:

贴现因子为 λ {\displaystyle \lambda } 0 < λ 1 {\displaystyle 0<\lambda \leq 1} )的贴现博弈 Γ λ {\displaystyle \Gamma _{\lambda }} 中,参与者 i {\displaystyle i} 的收益是 λ t = 1 ( 1 λ ) t 1 g t i {\displaystyle \lambda \sum _{t=1}^{\infty }(1-\lambda )^{t-1}g_{t}^{i}} n {\displaystyle n} 阶段博弈中,参与者 i {\displaystyle i} 的收益是 g ¯ n i := 1 n t = 1 n g t i {\displaystyle {\bar {g}}_{n}^{i}:={\frac {1}{n}}\sum _{t=1}^{n}g_{t}^{i}}

若存在有限多个状态和行动的二人零和博弈 Γ n {\displaystyle \Gamma _{n}} (各自是 Γ λ {\displaystyle \Gamma _{\lambda }} )的值为 v n ( m 1 ) {\displaystyle v_{n}(m_{1})} (各自是 v λ ( m 1 ) {\displaystyle v_{\lambda }(m_{1})} ),则 v n ( m 1 ) {\displaystyle v_{n}(m_{1})} n {\displaystyle n} 趋于无穷时收敛到一个极限,且 v λ ( m 1 ) {\displaystyle v_{\lambda }(m_{1})} λ {\displaystyle \lambda } 趋于 0 {\displaystyle 0} 时收敛到相同的极限。这一结论已被杜鲁门·彪利(Truman Bewley)和艾朗·克尔伯格(Elon Kohlberg)于1976年证明。

非贴现博弈 Γ {\displaystyle \Gamma _{\infty }} 中,参与者 i {\displaystyle i} 的收益是各阶段收益平均值的极限。在定义二人零和博弈 Γ {\displaystyle \Gamma _{\infty }} 的值与非零和博弈 Γ {\displaystyle \Gamma _{\infty }} 的均衡收益之前需要注意一些事情:若对于每一 ε > 0 {\displaystyle \varepsilon >0} 都有正整数 N {\displaystyle N} 、参与者1的策略 σ ε {\displaystyle \sigma _{\varepsilon }} 和参与者2的策略 τ ε {\displaystyle \tau _{\varepsilon }} ,二人零和随机博弈 Γ {\displaystyle \Gamma _{\infty }} 的一致值(uniform value) v {\displaystyle v_{\infty }} 存在,这样对于每一 σ {\displaystyle \sigma } τ {\displaystyle \tau } 和每一 n N {\displaystyle n\geq N} ,博弈中由 σ ε {\displaystyle \sigma _{\varepsilon }} τ {\displaystyle \tau } 定义的概率的 g ¯ n i {\displaystyle {\bar {g}}_{n}^{i}} 期望至少为 v ε {\displaystyle v_{\infty }-\varepsilon } ,由 σ {\displaystyle \sigma } τ ε {\displaystyle \tau _{\varepsilon }} 定义的概率的 g ¯ n i {\displaystyle {\bar {g}}_{n}^{i}} 期望至多为 v + ε {\displaystyle v_{\infty }+\varepsilon } 。让·弗朗索瓦·梅顿斯(Jean Francois Mertens)和亚伯拉罕·奈曼(Abraham Neyman)于1981年证明二人零和随机博弈具有一致值。

若参与者数量有限且行动集和状态集有限,则有限阶段随机博弈总有纳什均衡,对于总收益是贴现和的无限多阶段随机博弈也是如此。尼古拉斯·维勒(Nicolas Vieille)已经证明当总收益是各阶段收益平均值的下极限时,所有具有有限状态和行动空间的二人随机博弈都有近似纳什均衡。不过,当参与者多于2名时,随机博弈是否存在这类均衡仍是一个极具挑战性的开放性问题。

随机博弈在经济学、演化生物学和计算机网络中都有应用。事实上,随机博弈是重复博弈这类每一阶段都处于相同状态的博弈的一般化形式。

有关随机博弈的最全面的参考书籍是奈曼和索林编著的文集。菲拉尔和乌瑞兹所著的书籍更为基础,书中提供了马尔可夫决策过程(MDP)和二人随机博弈理论的严密的统一处理方法。他们创造了Competitive MDPs这一术语来概括一人和二人随机博弈。

相关

  • 连弩连弩是一种古代的远射武器,改进自弩,共分两种。一种是能把箭连续不断射向敌人的连发式;另一种是能同时发射多支箭的多发式。连弩最早出自战国时代,而在西汉连弩已用于实战。属于
  • 生育能力测试生育能力测试(Fertility testing)是评估生育能力的程序,也用来确认女性容易受孕的期间(即危险期)。生育能力和整体的健康有关,而性感染疾病也会影响生育能力。健康的女性自青春期
  • 奈姆蒂姆萨夫二世奈姆蒂姆萨夫二世(英语:Merenre Nemtyemsaf II)(或译为麦伦拉二世、莫润尔二世),古埃及古王国时期第六王朝的国王,作为儿子继承了父亲佩皮二世的王位。在位短暂,登基几个月后即为诸
  • 等效原理等效原理(德语:Äquivalenzprinzip,英语:equivalence principle),尤其是强等效原理,在广义相对论的引力理论中居于一个极重要的地位,它的重要性首先是爱因斯坦分别在1911年的《关于
  • 庐山声明《庐山声明》为1937年7月17日由蒋中正在江西庐山图书馆发表的声明,表示对侵华日军挑衅的退让底线。这一声明象征着第二次中日战争全面开始。1937年7月7日,卢沟桥事变发生。随
  • 伊丽莎白港伊丽莎白港(英语:Port Elizabeth),南非的一个港口城市,时常被简称“PE”, 被誉“友好的城市”及“多风的城市”取绰号,在南非是主要海港之一。1820年,当伊丽莎白港被确立为一个城市
  • 夏威夷僧海豹夏威夷僧海豹(学名:Neomonachus schauinslandi)是僧海豹属下的一种濒危物种,原产于夏威夷群岛,因而得名。 此外它也是夏威夷灰白蝙蝠之外当地唯一的原生哺乳动物。 因为人类的过
  • 立方费米体积(英语:Volume)是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在空间所占有的空间。一维空间物件(如线)及二维空间物件(如正
  • 80号州际公路80号州际公路(Interstate 80,简称I-80)是美国州际公路系统的一部分。西起加州旧金山,东连纽泽西州提内克。全长2,899.54英里(4,666.36千米),是整个系统第二长的。与林肯公路,以及历
  • 泛舟泛舟是指利用橡皮艇或者竹筏,在时而湍急时而平缓的水流中顺流而下的一种户外运动方式,为了安全,泛舟者需要头戴安全帽和身穿救生衣。皮划艇项目也是一项国际竞技比赛项目。