割圆术 (刘徽)

✍ dations ◷ 2025-12-01 22:45:57 #割圆术 (刘徽)

三国时代数学家刘徽的割圆术是中国古代数学中“一个十分精彩的算法”。在此之前,圆周率采用“径一周三”的实验数据。东汉科学家张衡采用 π = 736 232 = 3.172 {displaystyle pi ={frac {736}{232}}=3.172} π = 10 = 3.16 {displaystyle pi ={sqrt {10}}=3.16} 。刘徽认为 π = 10 {displaystyle pi ={sqrt {10}}} 过大。。东汉天文学家王蕃采用 π = 142 45 = 3.156 {displaystyle pi ={142 over 45}=3.156} 。这些圆周率都是实验值,都只准确到二位数字。刘徽是中国数学史上最先创造了一个从数学上计算圆周率到任意精确度的迭代程序的数学家。他自己通过分割圆为192边形,计算出圆周率在3.141024 与 3.142704之间,取其近似,并以 157 50 {displaystyle {157 over 50}} 表示。这个数值准确到三位数字,比前人的圆周率数值都准,但他自己次承认这个数值偏小。后来刘徽发明一种快捷算法,可以只用96边形得到和1536边形同等的精确度,从而得令他自己满意的 π = 3.1416 {displaystyle pi =3.1416}

刘徽割圆术简单而又严谨,富于程序性,可以继续分割下去,求得更精确的圆周率。南北朝时期著名数学家祖冲之用刘徽割圆术计算11次,分割圆为12288边形,得圆周率 π {displaystyle pi } =3.1415926,成为此后千年世界上最准确的圆周率。

刘徽在圆周率领域的贡献,不仅在于求得 157 50 {displaystyle {157 over 50}} π = 3.1416 {displaystyle pi =3.1416} ,更重要的在于他创造了一世界数学史上最精彩的割圆术:阿基米德割圆术和刘徽割圆术一样用双向迫近,因而同样严谨完备,但远不如刘徽简洁;阿基米德用双归谬法推证圆面积,不如刘徽用极限论先进;托勒密割圆术和阿尔·卡西割圆术只是单向迫近,不如刘徽严谨;赵友欣割圆术和日本关孝和割圆术从正方开割,属于刘徽割圆术的变化,而且也是单向迫近。刘徽割圆术虽然不是世界最早,却是数学史上最严谨完备简洁的割圆术。

刘徽割圆术是建立在圆面积论的基础之上的。他首先论证,将圆分割成多边形,分割来越细,多边形的边数越多,多边形的面积就和圆面积没有差别了。他说,将6边形一边的长度乘以圆半径,再乘3,得12边形的面积。将12边形的一边长乘半径,再乘6,得24边形面积。越割越细,多边形和圆面积的差越小。如此割了再割,最后终于和圆合为一体,毫无差别了。

刘徽明显已经掌握了无穷小分割和极限的概念:

显然,刘徽之所以研究余径,目的是从上限和下限两个方面逐步逼近圆面积:

刘徽进一步证明圆面积=圆周/2 × 半径。

刘徽从半径1尺圆的内接正6边形开始,逐次分割为12边形,24边形,48边形,96边形。反复使用勾股定理求得各多边形的边长,又用刘氏多边形面积公式求多边形面积。

令圆直径为2尺,折半得半径1尺。圆内接正6边形的边长也是1尺。如图:

OAP是一个直角三角形

APC是一个小直角三角形

令小弦AC长度为m,令小句PC长度为j

将上一轮的多边形边长m作为新一轮割圆的开始,作替换M=m=12边形的一边长度 = 517638.09 {displaystyle =517638.09} 忽继续将此多边形的一边平分,周而复始,重复使用:

将第二轮的多边形边长m作为第三轮割圆的起点,作替换 M = m = 261052 2 5 {displaystyle M=m=261052{2 over 5}}

根据刘徽多边形面积公式:

所以96边形的面积 A 96 = 130806 × 48 2 × 1000000 {displaystyle A_{96}=130806times {frac {48}{2}}times 1000000}

将第三轮的多边形边长m作为第四轮割圆的起点

作替换 M = m = 130806 {displaystyle M=m=130806}

根据刘徽多边形面积公式:

所以192边形的面积 A 192 = 65438 × 96 2 × 1000000 {displaystyle A_{192}=65438times {frac {96}{2}}times 1000000} 平方忽

刘徽利用多边形面积差的几何学,得出圆周率的双边不等式。

当N=96,2N=192:

刘徽认为这个面积已经超过圆面积,所以将192边形的面积的整数部分定为圆面积:

这就是徽率。

实际上只要计算精确度够高,刘徽割圆术可以计算到任何精确度,不仅限于二位小数点。

刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率 = 3927 1250 = 3.1416 {displaystyle ={3927 over 1250}=3.1416} 。但是刘徽却不叙述“分割96边形为192边形”,“分割192边形为384边形”,“分割384边形为768边形”,“分割768边形为1536边形”:因为他发现了一个快捷的算法,只要利用96边形的数据经过一次除法和一次加法,就可以获得和计算到1536边形同等的精确度 π = 3.1416 {displaystyle pi =3.1416} ,省去了4次开方计算;毕竟在三国时代用筹算进行开方相当的繁难。

刘徽圆周率捷法乃是以他素有研究的多边形面积差为基础的。

D 2 N = A 2 N A N {displaystyle D_{2N}=A_{2N}-A_{N}}

其中

刘徽圆周率捷法,可以解释如下几个问题:

刘徽的 π {displaystyle pi } = 3927 1250 {displaystyle 3927 over 1250} 后来见于印度数学中,足证古印度数学采用刘徽注《九章算术》

如令半径=1,从

可简化为:

根据刘徽割圆术迭代公式:

从半径=1的内接6边形开始:

半径=1圆形正内接多边形面积:

南北朝数学家祖冲之,并没有发明新的方法计算圆周率,而是将刘徽割圆术的计算,继续分割到12288边形,又用刘徽多边形面积公式,求得24576边形的面积:

再用刘徽圆周率不等式:

取八位有效数字即得祖冲之著名的圆周率不等式:

祖冲之算得的圆周率准确到小数点后7位,保持了世界最准确圆周率达900年之久。祖冲之熟悉何承天调日法,以3为弱率, 以4为强率,通过调日法计算7次得圆周率约率 22 7 > π {displaystyle {22 over 7}>pi } ,计算23次得密率 355 113 > π {displaystyle {355 over 113}>pi }

根据调日法计算出来的约率和密率都是强率;所谓约率只意味这个数值和圆周率的误差较大,并无约率“小于”圆周率的意思。

希腊数学家阿基米德用阿基米德割圆术计算圆周率,他的论证以计算线长为依据,在推导过程中不考虑多边形面积面积,和刘徽的以面积计算为中心的割圆术成对照。他用两套不同的方法方法,先多次分割圆的切线,证明π> 223 71 {displaystyle {223 over 71}} ;另用内接多边形,计算到96边形,证明π< 22 7 {displaystyle {22 over 7}} ,从而得到不等式

刘徽得到的圆周率弱值3.141024和强值3.142704都比阿基米德准确。

割圆术 (赵友钦)

相关

  • 汉诺威王国汉诺威王国(德语:Königreich Hannover),是1814年10月因维也纳会议而建立的王国,由乔治三世恢复他在拿破仑时代失去的汉诺威领地。它继承不伦瑞克-吕讷堡选侯国(非正式称为汉诺威
  • 软性错误软性错误是电子学及电脑运算中的错误,是因为一个信号或数据不正确造成的错误。软性错误可能是因为缺陷而造成,多半认为是因为设计或是架构上的错误,或者是因零件损坏而产生。软
  • 兹林州- Kroměříž District- Uherské Hradiště District- Vsetín District- Zlín District兹林州 (捷克语:Zlínský kraj)是捷克摩拉维亚地区中部和东部的一个州。面
  • 大象 (电影)《大象》(英语:Elephant)是由美国导演吉士·云·逊执导,以1999年美国俄勒冈州校园枪击案为题的电影。本片荣获2003年戛纳电影节金棕榈奖。导演吉士·云·逊表示片名《大象》的概
  • 李博亚李博亚(1992年7月2日-)出生于河南省平顶山市鲁山县,就读于郑州铁道警官高等专科学校,因在实习期间企图救一名自杀者而造成伤残,双小腿被火车轧断。事件发生后,李博亚被共青团河南省
  • 邓刚 (作家)邓刚(1945年-),原名马全理,男,山东牟平人,中国作家,曾任中国作家协会理事,辽宁省作家协会副主席。
  • 恰拉普尔恰拉普尔(Carapur),是印度果阿邦North Goa县的一个城镇。总人口5334(2001年)。该地2001年总人口5334人,其中男性2676人,女性2658人;0—6岁人口611人,其中男314人,女297人;识字率76.45%,
  • 蜂巢虫 †蜂巢虫(学名:)是一种生存于古新世赞尼特期至始新世的已灭绝海生单细胞有孔虫,其化石呈椭圆形或球形且体型很大。蜂巢虫的壳体由众多的小壳室组成,内部长满共生的海藻。它们生
  • 原鼬鬣狗原鼬鬣狗()是原始像麝猫的鬣狗,其下包括最早的。它们是细小的动物,有可伸缩的爪,估计它们大部分时间生活在树上,猎食昆虫及细小的动物。虽然它们是最原始的鬣狗之一,但它们都颇为成
  • 南京大胜关长江大桥 (铁路)南京大胜关长江大桥位于南京长江三桥上游1.55公里大胜关处,距南京长江大桥约20公里处,全长14789米,主桥长1615米。大桥由中国中铁大桥勘测设计院集团有限公司设计、中国中铁大