割圆术 (刘徽)

✍ dations ◷ 2025-04-26 17:17:45 #割圆术 (刘徽)

三国时代数学家刘徽的割圆术是中国古代数学中“一个十分精彩的算法”。在此之前,圆周率采用“径一周三”的实验数据。东汉科学家张衡采用 π = 736 232 = 3.172 {displaystyle pi ={frac {736}{232}}=3.172} π = 10 = 3.16 {displaystyle pi ={sqrt {10}}=3.16} 。刘徽认为 π = 10 {displaystyle pi ={sqrt {10}}} 过大。。东汉天文学家王蕃采用 π = 142 45 = 3.156 {displaystyle pi ={142 over 45}=3.156} 。这些圆周率都是实验值,都只准确到二位数字。刘徽是中国数学史上最先创造了一个从数学上计算圆周率到任意精确度的迭代程序的数学家。他自己通过分割圆为192边形,计算出圆周率在3.141024 与 3.142704之间,取其近似,并以 157 50 {displaystyle {157 over 50}} 表示。这个数值准确到三位数字,比前人的圆周率数值都准,但他自己次承认这个数值偏小。后来刘徽发明一种快捷算法,可以只用96边形得到和1536边形同等的精确度,从而得令他自己满意的 π = 3.1416 {displaystyle pi =3.1416}

刘徽割圆术简单而又严谨,富于程序性,可以继续分割下去,求得更精确的圆周率。南北朝时期著名数学家祖冲之用刘徽割圆术计算11次,分割圆为12288边形,得圆周率 π {displaystyle pi } =3.1415926,成为此后千年世界上最准确的圆周率。

刘徽在圆周率领域的贡献,不仅在于求得 157 50 {displaystyle {157 over 50}} π = 3.1416 {displaystyle pi =3.1416} ,更重要的在于他创造了一世界数学史上最精彩的割圆术:阿基米德割圆术和刘徽割圆术一样用双向迫近,因而同样严谨完备,但远不如刘徽简洁;阿基米德用双归谬法推证圆面积,不如刘徽用极限论先进;托勒密割圆术和阿尔·卡西割圆术只是单向迫近,不如刘徽严谨;赵友欣割圆术和日本关孝和割圆术从正方开割,属于刘徽割圆术的变化,而且也是单向迫近。刘徽割圆术虽然不是世界最早,却是数学史上最严谨完备简洁的割圆术。

刘徽割圆术是建立在圆面积论的基础之上的。他首先论证,将圆分割成多边形,分割来越细,多边形的边数越多,多边形的面积就和圆面积没有差别了。他说,将6边形一边的长度乘以圆半径,再乘3,得12边形的面积。将12边形的一边长乘半径,再乘6,得24边形面积。越割越细,多边形和圆面积的差越小。如此割了再割,最后终于和圆合为一体,毫无差别了。

刘徽明显已经掌握了无穷小分割和极限的概念:

显然,刘徽之所以研究余径,目的是从上限和下限两个方面逐步逼近圆面积:

刘徽进一步证明圆面积=圆周/2 × 半径。

刘徽从半径1尺圆的内接正6边形开始,逐次分割为12边形,24边形,48边形,96边形。反复使用勾股定理求得各多边形的边长,又用刘氏多边形面积公式求多边形面积。

令圆直径为2尺,折半得半径1尺。圆内接正6边形的边长也是1尺。如图:

OAP是一个直角三角形

APC是一个小直角三角形

令小弦AC长度为m,令小句PC长度为j

将上一轮的多边形边长m作为新一轮割圆的开始,作替换M=m=12边形的一边长度 = 517638.09 {displaystyle =517638.09} 忽继续将此多边形的一边平分,周而复始,重复使用:

将第二轮的多边形边长m作为第三轮割圆的起点,作替换 M = m = 261052 2 5 {displaystyle M=m=261052{2 over 5}}

根据刘徽多边形面积公式:

所以96边形的面积 A 96 = 130806 × 48 2 × 1000000 {displaystyle A_{96}=130806times {frac {48}{2}}times 1000000}

将第三轮的多边形边长m作为第四轮割圆的起点

作替换 M = m = 130806 {displaystyle M=m=130806}

根据刘徽多边形面积公式:

所以192边形的面积 A 192 = 65438 × 96 2 × 1000000 {displaystyle A_{192}=65438times {frac {96}{2}}times 1000000} 平方忽

刘徽利用多边形面积差的几何学,得出圆周率的双边不等式。

当N=96,2N=192:

刘徽认为这个面积已经超过圆面积,所以将192边形的面积的整数部分定为圆面积:

这就是徽率。

实际上只要计算精确度够高,刘徽割圆术可以计算到任何精确度,不仅限于二位小数点。

刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率 = 3927 1250 = 3.1416 {displaystyle ={3927 over 1250}=3.1416} 。但是刘徽却不叙述“分割96边形为192边形”,“分割192边形为384边形”,“分割384边形为768边形”,“分割768边形为1536边形”:因为他发现了一个快捷的算法,只要利用96边形的数据经过一次除法和一次加法,就可以获得和计算到1536边形同等的精确度 π = 3.1416 {displaystyle pi =3.1416} ,省去了4次开方计算;毕竟在三国时代用筹算进行开方相当的繁难。

刘徽圆周率捷法乃是以他素有研究的多边形面积差为基础的。

D 2 N = A 2 N A N {displaystyle D_{2N}=A_{2N}-A_{N}}

其中

刘徽圆周率捷法,可以解释如下几个问题:

刘徽的 π {displaystyle pi } = 3927 1250 {displaystyle 3927 over 1250} 后来见于印度数学中,足证古印度数学采用刘徽注《九章算术》

如令半径=1,从

可简化为:

根据刘徽割圆术迭代公式:

从半径=1的内接6边形开始:

半径=1圆形正内接多边形面积:

南北朝数学家祖冲之,并没有发明新的方法计算圆周率,而是将刘徽割圆术的计算,继续分割到12288边形,又用刘徽多边形面积公式,求得24576边形的面积:

再用刘徽圆周率不等式:

取八位有效数字即得祖冲之著名的圆周率不等式:

祖冲之算得的圆周率准确到小数点后7位,保持了世界最准确圆周率达900年之久。祖冲之熟悉何承天调日法,以3为弱率, 以4为强率,通过调日法计算7次得圆周率约率 22 7 > π {displaystyle {22 over 7}>pi } ,计算23次得密率 355 113 > π {displaystyle {355 over 113}>pi }

根据调日法计算出来的约率和密率都是强率;所谓约率只意味这个数值和圆周率的误差较大,并无约率“小于”圆周率的意思。

希腊数学家阿基米德用阿基米德割圆术计算圆周率,他的论证以计算线长为依据,在推导过程中不考虑多边形面积面积,和刘徽的以面积计算为中心的割圆术成对照。他用两套不同的方法方法,先多次分割圆的切线,证明π> 223 71 {displaystyle {223 over 71}} ;另用内接多边形,计算到96边形,证明π< 22 7 {displaystyle {22 over 7}} ,从而得到不等式

刘徽得到的圆周率弱值3.141024和强值3.142704都比阿基米德准确。

割圆术 (赵友钦)

相关

  • 弧状云弧状云(arcus cloud),是一种罕见的云层。通常会形成于冷锋之前缘,一旦寒冷的气流扩展开来,会推升前方的暖空气,气流有时会沿着水平轴方向流动。弧状云又可分为卷轴云(Roll clouds)和
  • 哲学逻辑哲学逻辑是对逻辑更特定于哲学的方面的研究。这个术语相对于数理逻辑,因为数理逻辑开发于19世纪晚期,已经包含了传统上一般由逻辑学处理的大多数主题。它关心的是尽可能的以最
  • 脓溢性皮肤角化病脓溢性皮肤角化病 (英语:Keratoderma blennorrhagicum)是反应性关节炎的皮肤表现,见于约15%的反应性关节炎患者。发生部位通常位于手掌或脚掌,但也可能蔓延至阴囊,头皮或躯干等
  • 实验室设备实验室设备是指在实验室里工作人士用的各种各样的工具和设备。实验室设备一般是用作进行实验或作为测量,和收集资料。实验室设备依实验室的种类不同,而有不同的设备。这些工具
  • HNO次硝酸,化学式为HNO,人们较为了解它在气相中的性质。与之对应的共轭碱为NO−,(pKa = 11.4)。NO−在氧化还原反应中对应的氧化产物为一氧化氮(NO),与氧气互为等电子体。次硝酸常作
  • 溪蟹总科见内文溪蟹总科(Potamoidea)是短尾下目(螃蟹)之下的一个总科。根据目前的分类,只分为溪蟹科及仿溪蟹科两个科。本科原来还有两个科,现时已被降格成为仿溪蟹科之下的亚科。溪蟹总科
  • 谈伦 (弘治进士)谈伦(1461年12月11日-1520年),字敬仲,四川邻水县人,明朝政治人物。弘治壬戌进士,累官潮州府知府。谈伦行二, 天顺五年十一月初十日(1461年12月11日)生。早年为国子生,治《易经》。弘治
  • 花旗少林《花旗少林》(英语:),为1994年刘镇伟执导之电影。(2000)美籍华人干探张正风流成性,到处结交异国女朋友,目的只是找一个理想的结婚对象,但经常失败,常被舅父取笑。虽然张正处处留情,可
  • 哲養·北炯哲养·北炯(Jean-Yves Béziau,1965年1月15日出生于法国奥尔良)是巴西研究协会(Brazilian Research Council - CNPq)的教授和研究员,目前任教于巴西里约热内卢大学。北炯是法国和瑞士两国的公民。他对于英语,和葡萄牙语精通的程度就如同他的母语法语一样,他同时也使用这三种语言发表多篇学术文章。北炯的老师是知名逻辑学家,Newton da Costa,他们俩位也时常进行合作。北炯特别主要的研究是关于弗协调逻辑(paraconsistent logic) 和泛逻辑
  • 没藏皇后 (李元昊)宣穆惠文皇后(11世纪?-1056年),没藏氏,西夏景宗李元昊的情妇,李谅祚的生母,兄为权臣没藏讹庞。没藏氏原是西夏大臣野利遇乞的妻子,美艳妩媚,风流放荡。野利遇乞和李元昊都去世后,又与野利遇乞属下的出纳官李守贵和李元昊的侍从补细乞多巳私通。1047年没藏氏生下一子李谅祚(另说谅祚生于元昊被弑三月之后)。1048年,李元昊被杀。其子以一岁幼龄即位,西夏的大权掌握在没藏氏和其兄弟没藏讹庞的手里。福圣承道四年(1056年)在某次没藏氏和补细乞多巳(第二任男宠)去贺兰山打猎的途中,被情夫李守贵派人半路截杀,没藏