模糊函数与韦格纳分布的关系

✍ dations ◷ 2025-02-24 02:45:08 #信号处理

模糊函数(Ambiguity function,AF):
A F s ( θ , τ ) = s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle AF_{s}(\theta ,\tau )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\theta t}\,dt} 韦格纳分布(Wigner distribution,WD):
W D s ( t , ω ) = s ( t + τ 2 ) s ( t τ 2 ) e j ω τ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\omega \tau }\,d\tau }

一个讯号s(t),自相关函数为 R ( τ ) = s ( t ) s ( t τ ) d t {\displaystyle R(\tau )=\int _{-\infty }^{\infty }s(t)s^{*}(t-\tau )\,dt} 如果 R ( τ ) {\displaystyle R(\tau )} 为时间相依性(time-dependent),则时间相依自相关(time-dependent auto-correlation)为 R ( t , τ ) {\displaystyle R(t,\tau )} ,时间相依(时变)频谱(time-dependent spectrum)可以表示的形式类似于传统的功率谱,即对时间相依自相关函数做傅立叶变换。
P ( t , ω ) = R ( t , τ ) e j ω τ d τ {\displaystyle P(t,\omega )=\int _{-\infty }^{\infty }R(t,\tau )e^{-j\omega \tau }\,d\tau }
不同的时间相依自相关会导致不同的时间相依功率谱。
如果 R ( t , τ ) = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle R(t,\tau )=s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} ,则时间相依功率谱变成为Wigner distribution
若对 R ( t , τ ) {\displaystyle R(t,\tau )} 中的t做傅立叶逆转换,得到另一个时频表示,对称模糊函数(symmetric ambiguity function,SAF)
S A F s ( θ , τ ) = 1 2 π s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle SAF_{s}(\theta ,\tau )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{j\theta t}\,dt} 模糊函数反映信号在时间和相位的相关性,并已广泛应用在雷达和声纳系统上。给一个对称模糊函数 S A F s ( θ , τ ) {\displaystyle SAF_{s}(\theta ,\tau )} ,透过傅立叶变换可以得到时间相依自相关:
S A F s ( θ , τ ) e j θ t d θ = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle \int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j\theta t}\,d\theta =s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} 由上式可以推得
W D s ( t , ω ) = S A F s ( θ , τ ) e j ( ω τ + θ t ) d θ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j(\omega \tau +\theta t)}\,d\theta \,d\tau }
也就是对对称模糊函数做两次傅立叶变换可以得到Wigner distribution

一个讯号为两个Gaussian函数的和:
s ( t ) = i = 1 2 s i ( t ) = i = 1 2 α π 4 e α 2 ( t t i ) 2 + j ω i t {\displaystyle s(t)=\sum _{i=1}^{2}s_{i}(t)=\sum _{i=1}^{2}{\sqrt{\frac {\alpha }{\pi }}}e^{-{\tfrac {\alpha }{2}}(t-t_{i})^{2}+j\omega _{i}t}}
S A F s ( θ , τ ) = i = 1 2 S A F s i ( θ , τ ) + S A F s 1 , s 2 ( θ , τ ) + S A F s 2 , s 1 ( θ , τ ) {\displaystyle \Rightarrow SAF_{s}(\theta ,\tau )=\sum _{i=1}^{2}SAF_{si}(\theta ,\tau )+SAF_{s1,s2}(\theta ,\tau )+SAF_{s2,s1}(\theta ,\tau )}

从范例中得知一项重要事实,即为,在模糊域(ambiguity domain)中的auto-term总是集中在原点(0,0),而cross-term总是在远离原点处,所以可以用一个2D lowpass filter在模糊域中抑制cross-term的干扰,如下:
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau } ,其中 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} 为2D lowpass filter

如果 Φ ( θ , τ ) d θ d τ = ϕ ( t , ω ) {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\Phi (\theta ,\tau )\,d\theta \,d\tau =\phi (t,\omega )} ,则
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau }
= ϕ ( x , y ) W D s ( t x , ω y ) d x d y = S W D ( t , ω ) {\displaystyle =\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\phi (x,y)WD_{s}(t-x,\omega -y)\,dx\,dy=SWD(t,\omega )}

通常 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} ( 和 ϕ ( t , ω ) {\displaystyle \phi (t,\omega )} )当作kernal function,用来控制SWD的特性。


若Wigner分布和对称模糊函数用大小(magnitude)及相位(phase)表示,如下:
W D s 1 , s 2 ( t , ω ) = A W D ( t , ω ) e j φ W D ( t , ω ) {\displaystyle WD_{s1,s2}(t,\omega )=A_{WD}(t,\omega )e^{j\varphi _{WD}(t,\omega )}}
S A F s 1 , s 2 ( θ , τ ) = A S A F ( θ , τ ) e j φ S A F ( θ , τ ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=A_{SAF}(\theta ,\tau )e^{j\varphi _{SAF}(\theta ,\tau )}}
θ φ S A F ( θ , τ ) = t u {\displaystyle {\frac {\partial }{\partial \theta }}\varphi _{SAF}(\theta ,\tau )=-t_{u}} , τ φ S A F ( θ , τ ) = ω u {\displaystyle {\frac {\partial }{\partial \tau }}\varphi _{SAF}(\theta ,\tau )=\omega _{u}}
也就是说对对称模糊函数的相位做偏微分,会等于Wigner分布的时频(time-frequency)中心。
相反地, ω φ W D ( t , ω ) = t d {\displaystyle {\frac {\partial }{\partial \omega }}\varphi _{WD}(t,\omega )=t_{d}} , t φ W D ( t , ω ) = ω d {\displaystyle {\frac {\partial }{\partial t}}\varphi _{WD}(t,\omega )=\omega _{d}}
则为对Wigner分布的相位做偏微分,会等于对称模糊函数的中心。


如果 ω 1 = ω 2 = ω 0 {\displaystyle \omega _{1}=\omega _{2}=\omega _{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j ( ω 0 τ θ t u ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j(\omega _{0}\tau -\theta t_{u})}}
会集中在 τ {\displaystyle \tau } 轴上。


如果 t 1 = t 2 = t 0 {\displaystyle t_{1}=t_{2}=t_{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j}}
会集中在 θ {\displaystyle \theta } 轴上。

相关

  • 最年长在世国家领导人列表此份名单所列人员,皆曾任或现任主权国家国家元首或政府首脑(即总统、总理或君主等),且有可靠二手来源证明其仍在世。最年长的在世领导人是韩国的前国务总理玄胜锺(101岁49天)。在
  • 电子轨道原子轨道(德语:atomorbital;英语:atomic orbital),又称轨态,是以数学函数描述原子中电子似波行为。此波函数可用来计算在原子核外的特定空间中,找到原子中电子的概率,并指出电子在三
  • 塞西尔埃德加·阿尔杰农·罗伯特·加斯科因-塞西尔,第一代切尔伍德的塞西尔子爵,CH,PC,QC(Edgar Algernon Robert Gascoyne-Cecil, 1st Viscount Cecil of Chelwood,1864年9月14日-1958
  • 奥西奥拉奥西奥拉国家森林(英语:Osceola National Forest)是一座美国国家森林,位于佛罗里达州。奥西奥拉国家森林依照美国总统赫伯特·胡佛的法令于1931年7月10日设立,其名称是为了纪念美
  • 1,1'-联二茂铁1,1'-联二茂铁是一种金属有机化合物,又称二(富瓦烯)二铁(简写BFDFe),化学式为C20H16Fe2。1,1'-联二茂铁可由1,1'-二锂代二茂铁·,,,-四甲基乙二胺和4反应得到,氧化后加入蒸馏水,得
  • 安德烈·伊万诺维奇·别洛夫安德烈·伊万诺维奇·别洛夫(俄语:Андрей Иванович Белов,1917年8月19日-2001年11月29日)是苏联军事人物,通信兵元帅(1973年)。1917年生于普斯科夫。1938年参加
  • 斯洛伐克观光斯洛伐克的主要观光看点包括了自然景观、山地、洞穴、中世纪城堡和城镇、民间建筑、温泉和滑雪胜地。2006年,有超过160万人到访斯洛伐克,其中布拉迪斯拉瓦和高塔特拉山是是最
  • 三好氏三好氏是日本的一个氏族,本姓源氏。三好氏为信浓源氏的一族,镰仓时代阿波守护小笠原氏的支流。三好氏在室町时代担任阿波守护代。战国时代领有阿波等四国东部,以及畿内一带,成为
  • 壶萼刺茄壶萼刺茄(学名:)又名黄花刺茄,为茄科茄属下的一种一年生杂草。原产于新热带区和美国西南部。也是一种入侵物种。
  • 胡玉禄胡玉禄(1871年-1948年),佤名锡弄撒猛,官名困鄂(困亦作“昆”),云南省沧源班老部落王,是胡玉堂之兄,与班洪王胡玉山为家族兄弟关系。1933年,英方与永邦王小麻哈、班弄头人马美廷签订合办