模糊函数与韦格纳分布的关系

✍ dations ◷ 2025-07-31 07:44:10 #信号处理

模糊函数(Ambiguity function,AF):
A F s ( θ , τ ) = s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle AF_{s}(\theta ,\tau )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\theta t}\,dt} 韦格纳分布(Wigner distribution,WD):
W D s ( t , ω ) = s ( t + τ 2 ) s ( t τ 2 ) e j ω τ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\omega \tau }\,d\tau }

一个讯号s(t),自相关函数为 R ( τ ) = s ( t ) s ( t τ ) d t {\displaystyle R(\tau )=\int _{-\infty }^{\infty }s(t)s^{*}(t-\tau )\,dt} 如果 R ( τ ) {\displaystyle R(\tau )} 为时间相依性(time-dependent),则时间相依自相关(time-dependent auto-correlation)为 R ( t , τ ) {\displaystyle R(t,\tau )} ,时间相依(时变)频谱(time-dependent spectrum)可以表示的形式类似于传统的功率谱,即对时间相依自相关函数做傅立叶变换。
P ( t , ω ) = R ( t , τ ) e j ω τ d τ {\displaystyle P(t,\omega )=\int _{-\infty }^{\infty }R(t,\tau )e^{-j\omega \tau }\,d\tau }
不同的时间相依自相关会导致不同的时间相依功率谱。
如果 R ( t , τ ) = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle R(t,\tau )=s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} ,则时间相依功率谱变成为Wigner distribution
若对 R ( t , τ ) {\displaystyle R(t,\tau )} 中的t做傅立叶逆转换,得到另一个时频表示,对称模糊函数(symmetric ambiguity function,SAF)
S A F s ( θ , τ ) = 1 2 π s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle SAF_{s}(\theta ,\tau )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{j\theta t}\,dt} 模糊函数反映信号在时间和相位的相关性,并已广泛应用在雷达和声纳系统上。给一个对称模糊函数 S A F s ( θ , τ ) {\displaystyle SAF_{s}(\theta ,\tau )} ,透过傅立叶变换可以得到时间相依自相关:
S A F s ( θ , τ ) e j θ t d θ = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle \int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j\theta t}\,d\theta =s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} 由上式可以推得
W D s ( t , ω ) = S A F s ( θ , τ ) e j ( ω τ + θ t ) d θ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j(\omega \tau +\theta t)}\,d\theta \,d\tau }
也就是对对称模糊函数做两次傅立叶变换可以得到Wigner distribution

一个讯号为两个Gaussian函数的和:
s ( t ) = i = 1 2 s i ( t ) = i = 1 2 α π 4 e α 2 ( t t i ) 2 + j ω i t {\displaystyle s(t)=\sum _{i=1}^{2}s_{i}(t)=\sum _{i=1}^{2}{\sqrt{\frac {\alpha }{\pi }}}e^{-{\tfrac {\alpha }{2}}(t-t_{i})^{2}+j\omega _{i}t}}
S A F s ( θ , τ ) = i = 1 2 S A F s i ( θ , τ ) + S A F s 1 , s 2 ( θ , τ ) + S A F s 2 , s 1 ( θ , τ ) {\displaystyle \Rightarrow SAF_{s}(\theta ,\tau )=\sum _{i=1}^{2}SAF_{si}(\theta ,\tau )+SAF_{s1,s2}(\theta ,\tau )+SAF_{s2,s1}(\theta ,\tau )}

从范例中得知一项重要事实,即为,在模糊域(ambiguity domain)中的auto-term总是集中在原点(0,0),而cross-term总是在远离原点处,所以可以用一个2D lowpass filter在模糊域中抑制cross-term的干扰,如下:
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau } ,其中 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} 为2D lowpass filter

如果 Φ ( θ , τ ) d θ d τ = ϕ ( t , ω ) {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\Phi (\theta ,\tau )\,d\theta \,d\tau =\phi (t,\omega )} ,则
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau }
= ϕ ( x , y ) W D s ( t x , ω y ) d x d y = S W D ( t , ω ) {\displaystyle =\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\phi (x,y)WD_{s}(t-x,\omega -y)\,dx\,dy=SWD(t,\omega )}

通常 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} ( 和 ϕ ( t , ω ) {\displaystyle \phi (t,\omega )} )当作kernal function,用来控制SWD的特性。


若Wigner分布和对称模糊函数用大小(magnitude)及相位(phase)表示,如下:
W D s 1 , s 2 ( t , ω ) = A W D ( t , ω ) e j φ W D ( t , ω ) {\displaystyle WD_{s1,s2}(t,\omega )=A_{WD}(t,\omega )e^{j\varphi _{WD}(t,\omega )}}
S A F s 1 , s 2 ( θ , τ ) = A S A F ( θ , τ ) e j φ S A F ( θ , τ ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=A_{SAF}(\theta ,\tau )e^{j\varphi _{SAF}(\theta ,\tau )}}
θ φ S A F ( θ , τ ) = t u {\displaystyle {\frac {\partial }{\partial \theta }}\varphi _{SAF}(\theta ,\tau )=-t_{u}} , τ φ S A F ( θ , τ ) = ω u {\displaystyle {\frac {\partial }{\partial \tau }}\varphi _{SAF}(\theta ,\tau )=\omega _{u}}
也就是说对对称模糊函数的相位做偏微分,会等于Wigner分布的时频(time-frequency)中心。
相反地, ω φ W D ( t , ω ) = t d {\displaystyle {\frac {\partial }{\partial \omega }}\varphi _{WD}(t,\omega )=t_{d}} , t φ W D ( t , ω ) = ω d {\displaystyle {\frac {\partial }{\partial t}}\varphi _{WD}(t,\omega )=\omega _{d}}
则为对Wigner分布的相位做偏微分,会等于对称模糊函数的中心。


如果 ω 1 = ω 2 = ω 0 {\displaystyle \omega _{1}=\omega _{2}=\omega _{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j ( ω 0 τ θ t u ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j(\omega _{0}\tau -\theta t_{u})}}
会集中在 τ {\displaystyle \tau } 轴上。


如果 t 1 = t 2 = t 0 {\displaystyle t_{1}=t_{2}=t_{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j}}
会集中在 θ {\displaystyle \theta } 轴上。

相关

  • 可可脂可可脂(cocoa butter),也称作“可可油”,是在制作巧克力和可可粉的过程中自可可豆榨取的天然植物性可食用油脂,它占可可豆50-57%的重量,并赋予了巧克力独特的入口即化口感。可可脂
  • 2009年 叶卡捷琳堡第一次金砖国家峰会,召开于2009年6月16日的俄罗斯叶卡捷琳堡。包括俄罗斯、中国、巴西和印度四位国家的元首出席了本次会议。2001年,美国高盛公司首席经济师吉姆·奥尼尔(Jim O
  • 上饶市上饶市,简称饶,古称饶州、信州、广信,是中华人民共和国江西省下辖的地级市,位于江西省东北部。市境南界鹰潭市、抚州市与福建省南平市,西接南昌市、九江市,北邻景德镇市与安徽省池
  • 滨海学院南开大学滨海学院(Nankai University Binhai College),是2004年由原天津市大港区政府(现滨海新区大港管委会)与南开大学合作建立的独立学院。该校采取股份制形式建立,南开大学校长
  • 法国共和国卫队法国共和国卫队(法语:Garde républicaine)是法国的一支亲卫队,属国家宪兵管辖,主要负责政府机构的警卫工作。此外法国共和国卫队还负责保护要人及国宾。法国共和国卫队由第1步兵
  • 中国神话人物列表本列表是介绍关于中国神话的神祇和神仙等。源自中国上古创世神话和传说的神祇:源自道教基础信仰的神祇:源自道教传说中的神仙:被神化的先秦人物:道教各道派的祖师:源自民间的万物
  • 9K333柳树便携式防空导弹9K333“柳树”(英语:9K333 Verba;俄语:9К333 «Верба»;以下简称为“柳树”)是一具由俄罗斯科洛姆纳机械设计局(英语:KB Mashinostroyeniya)所研制及生产的第四代便携式红外寻
  • 长颌似鲹长颌似鲹,又称逆钩鲹,俗名为七星仔、棘葱仔、鬼平,为辐鳍鱼纲鲈形目鲈亚目鲹科的其中一个种。本鱼分布于印度太平洋区,包括东非、马达加斯加、马尔代夫、斯里兰卡、印度、安达曼
  • 法马古斯塔区法马古斯塔区是塞浦路斯的一个区,位于塞浦路斯北部。首府为法马古斯塔。法马古斯塔区的大部分地区为北塞所控制,一小部分为以希腊族为主体的塞浦路斯共和国政府控制。希控部分
  • 沃尔夫冈·施鲁赫特沃尔夫冈·施鲁赫特(1938年4月4日-)(Wolfgang Schluchter)是一名德国社会学家。他的研究重点是马克斯·韦伯的社会学理论、文化社会学、宗教社会学以及社会历史学派理论。他也是