模糊函数与韦格纳分布的关系

✍ dations ◷ 2025-07-02 13:20:11 #信号处理

模糊函数(Ambiguity function,AF):
A F s ( θ , τ ) = s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle AF_{s}(\theta ,\tau )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\theta t}\,dt} 韦格纳分布(Wigner distribution,WD):
W D s ( t , ω ) = s ( t + τ 2 ) s ( t τ 2 ) e j ω τ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\omega \tau }\,d\tau }

一个讯号s(t),自相关函数为 R ( τ ) = s ( t ) s ( t τ ) d t {\displaystyle R(\tau )=\int _{-\infty }^{\infty }s(t)s^{*}(t-\tau )\,dt} 如果 R ( τ ) {\displaystyle R(\tau )} 为时间相依性(time-dependent),则时间相依自相关(time-dependent auto-correlation)为 R ( t , τ ) {\displaystyle R(t,\tau )} ,时间相依(时变)频谱(time-dependent spectrum)可以表示的形式类似于传统的功率谱,即对时间相依自相关函数做傅立叶变换。
P ( t , ω ) = R ( t , τ ) e j ω τ d τ {\displaystyle P(t,\omega )=\int _{-\infty }^{\infty }R(t,\tau )e^{-j\omega \tau }\,d\tau }
不同的时间相依自相关会导致不同的时间相依功率谱。
如果 R ( t , τ ) = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle R(t,\tau )=s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} ,则时间相依功率谱变成为Wigner distribution
若对 R ( t , τ ) {\displaystyle R(t,\tau )} 中的t做傅立叶逆转换,得到另一个时频表示,对称模糊函数(symmetric ambiguity function,SAF)
S A F s ( θ , τ ) = 1 2 π s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle SAF_{s}(\theta ,\tau )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{j\theta t}\,dt} 模糊函数反映信号在时间和相位的相关性,并已广泛应用在雷达和声纳系统上。给一个对称模糊函数 S A F s ( θ , τ ) {\displaystyle SAF_{s}(\theta ,\tau )} ,透过傅立叶变换可以得到时间相依自相关:
S A F s ( θ , τ ) e j θ t d θ = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle \int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j\theta t}\,d\theta =s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} 由上式可以推得
W D s ( t , ω ) = S A F s ( θ , τ ) e j ( ω τ + θ t ) d θ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j(\omega \tau +\theta t)}\,d\theta \,d\tau }
也就是对对称模糊函数做两次傅立叶变换可以得到Wigner distribution

一个讯号为两个Gaussian函数的和:
s ( t ) = i = 1 2 s i ( t ) = i = 1 2 α π 4 e α 2 ( t t i ) 2 + j ω i t {\displaystyle s(t)=\sum _{i=1}^{2}s_{i}(t)=\sum _{i=1}^{2}{\sqrt{\frac {\alpha }{\pi }}}e^{-{\tfrac {\alpha }{2}}(t-t_{i})^{2}+j\omega _{i}t}}
S A F s ( θ , τ ) = i = 1 2 S A F s i ( θ , τ ) + S A F s 1 , s 2 ( θ , τ ) + S A F s 2 , s 1 ( θ , τ ) {\displaystyle \Rightarrow SAF_{s}(\theta ,\tau )=\sum _{i=1}^{2}SAF_{si}(\theta ,\tau )+SAF_{s1,s2}(\theta ,\tau )+SAF_{s2,s1}(\theta ,\tau )}

从范例中得知一项重要事实,即为,在模糊域(ambiguity domain)中的auto-term总是集中在原点(0,0),而cross-term总是在远离原点处,所以可以用一个2D lowpass filter在模糊域中抑制cross-term的干扰,如下:
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau } ,其中 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} 为2D lowpass filter

如果 Φ ( θ , τ ) d θ d τ = ϕ ( t , ω ) {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\Phi (\theta ,\tau )\,d\theta \,d\tau =\phi (t,\omega )} ,则
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau }
= ϕ ( x , y ) W D s ( t x , ω y ) d x d y = S W D ( t , ω ) {\displaystyle =\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\phi (x,y)WD_{s}(t-x,\omega -y)\,dx\,dy=SWD(t,\omega )}

通常 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} ( 和 ϕ ( t , ω ) {\displaystyle \phi (t,\omega )} )当作kernal function,用来控制SWD的特性。


若Wigner分布和对称模糊函数用大小(magnitude)及相位(phase)表示,如下:
W D s 1 , s 2 ( t , ω ) = A W D ( t , ω ) e j φ W D ( t , ω ) {\displaystyle WD_{s1,s2}(t,\omega )=A_{WD}(t,\omega )e^{j\varphi _{WD}(t,\omega )}}
S A F s 1 , s 2 ( θ , τ ) = A S A F ( θ , τ ) e j φ S A F ( θ , τ ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=A_{SAF}(\theta ,\tau )e^{j\varphi _{SAF}(\theta ,\tau )}}
θ φ S A F ( θ , τ ) = t u {\displaystyle {\frac {\partial }{\partial \theta }}\varphi _{SAF}(\theta ,\tau )=-t_{u}} , τ φ S A F ( θ , τ ) = ω u {\displaystyle {\frac {\partial }{\partial \tau }}\varphi _{SAF}(\theta ,\tau )=\omega _{u}}
也就是说对对称模糊函数的相位做偏微分,会等于Wigner分布的时频(time-frequency)中心。
相反地, ω φ W D ( t , ω ) = t d {\displaystyle {\frac {\partial }{\partial \omega }}\varphi _{WD}(t,\omega )=t_{d}} , t φ W D ( t , ω ) = ω d {\displaystyle {\frac {\partial }{\partial t}}\varphi _{WD}(t,\omega )=\omega _{d}}
则为对Wigner分布的相位做偏微分,会等于对称模糊函数的中心。


如果 ω 1 = ω 2 = ω 0 {\displaystyle \omega _{1}=\omega _{2}=\omega _{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j ( ω 0 τ θ t u ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j(\omega _{0}\tau -\theta t_{u})}}
会集中在 τ {\displaystyle \tau } 轴上。


如果 t 1 = t 2 = t 0 {\displaystyle t_{1}=t_{2}=t_{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j}}
会集中在 θ {\displaystyle \theta } 轴上。

相关

  • 伞藻属伞藻属(学名:Acetabularia)是绿藻的一个属,又称“人鱼酒杯”(mermaid's wine glass)。伞藻属的所有种都属于单细胞生物,外表呈现伞形。细长的伞柱长0.5∼10公分,而顶端有一圈分枝,
  • CK有机钾化学是研究碳-钾键的化合物的化学分支。有机钾化合物非常活泼,C-K键有高度的离子性。有机钾化合物可以由金属钾和卤代烃直接反应得到,一般选用氯代烃:但这种制法容易发送
  • 绸,本字写成䌷,是一类丝织品,以平纹织法织成,质薄而软,有花绸、素绸之分。又可细分为宫绸、茧绸、绉绸。绸与绫、罗、缎合称绫罗绸缎。
  • 胖子胖子(英语:Fat Man)是第二次世界大战时美国在日本长崎投掷的原子弹的名称。1945年8月9日,即广岛首枚原子弹爆炸后3天,由查尔斯·斯威尼(英语:Charles Sweeney)驾驶的B-29超级空中堡
  • 淡水公司田溪桥遗迹公司田桥遗址是位于台湾北部新北市淡水区的新制古迹,属于三级古迹,邻近三芝区,该桥建于1812年(清嘉庆12年),道光年间损毁,1862年(清同治元年)重建。2001年时成为当时台北县县定古迹(今
  • 郑 明郑明可以指:
  • U型谷冰川谷(又称U形谷、冰川槽谷)是冰川侵蚀作用形成的谷地。它的山谷陡峭,谷底平缓,横剖面呈抛物线形,类似字母U。当冰川顺着倾斜的山坡向下移动,山谷就会被冲刷、侵蚀。等到冰川融化
  • 杜鲁门·卡波特杜鲁门·贾西亚·卡波特(英语:Truman Garcia Capote,发音为/ˈtruːmən kəˈpoʊti/;1924年9月30日-1984年8月25日),本名杜鲁门·史崔克福斯·珀森斯(英语:Truman Streckfus Person
  • 萨杜尔斯哈哈尔萨杜尔斯哈哈尔(Sadulshahar),是印度拉贾斯坦邦Ganganagar县的一个城镇。总人口22320(2001年)。该地2001年总人口22320人,其中男性11914人,女性10406人;0—6岁人口3218人,其中男1821
  • 奇尔加奥恩奇尔加奥恩(Chirgaon),是印度北方邦Jhansi县的一个城镇。总人口14105(2001年)。该地2001年总人口14105人,其中男性7508人,女性6597人;0—6岁人口1913人,其中男1069人,女844人;识字率67.