模糊函数与韦格纳分布的关系

✍ dations ◷ 2025-11-20 22:33:03 #信号处理

模糊函数(Ambiguity function,AF):
A F s ( θ , τ ) = s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle AF_{s}(\theta ,\tau )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\theta t}\,dt} 韦格纳分布(Wigner distribution,WD):
W D s ( t , ω ) = s ( t + τ 2 ) s ( t τ 2 ) e j ω τ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\omega \tau }\,d\tau }

一个讯号s(t),自相关函数为 R ( τ ) = s ( t ) s ( t τ ) d t {\displaystyle R(\tau )=\int _{-\infty }^{\infty }s(t)s^{*}(t-\tau )\,dt} 如果 R ( τ ) {\displaystyle R(\tau )} 为时间相依性(time-dependent),则时间相依自相关(time-dependent auto-correlation)为 R ( t , τ ) {\displaystyle R(t,\tau )} ,时间相依(时变)频谱(time-dependent spectrum)可以表示的形式类似于传统的功率谱,即对时间相依自相关函数做傅立叶变换。
P ( t , ω ) = R ( t , τ ) e j ω τ d τ {\displaystyle P(t,\omega )=\int _{-\infty }^{\infty }R(t,\tau )e^{-j\omega \tau }\,d\tau }
不同的时间相依自相关会导致不同的时间相依功率谱。
如果 R ( t , τ ) = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle R(t,\tau )=s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} ,则时间相依功率谱变成为Wigner distribution
若对 R ( t , τ ) {\displaystyle R(t,\tau )} 中的t做傅立叶逆转换,得到另一个时频表示,对称模糊函数(symmetric ambiguity function,SAF)
S A F s ( θ , τ ) = 1 2 π s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle SAF_{s}(\theta ,\tau )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{j\theta t}\,dt} 模糊函数反映信号在时间和相位的相关性,并已广泛应用在雷达和声纳系统上。给一个对称模糊函数 S A F s ( θ , τ ) {\displaystyle SAF_{s}(\theta ,\tau )} ,透过傅立叶变换可以得到时间相依自相关:
S A F s ( θ , τ ) e j θ t d θ = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle \int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j\theta t}\,d\theta =s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} 由上式可以推得
W D s ( t , ω ) = S A F s ( θ , τ ) e j ( ω τ + θ t ) d θ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j(\omega \tau +\theta t)}\,d\theta \,d\tau }
也就是对对称模糊函数做两次傅立叶变换可以得到Wigner distribution

一个讯号为两个Gaussian函数的和:
s ( t ) = i = 1 2 s i ( t ) = i = 1 2 α π 4 e α 2 ( t t i ) 2 + j ω i t {\displaystyle s(t)=\sum _{i=1}^{2}s_{i}(t)=\sum _{i=1}^{2}{\sqrt{\frac {\alpha }{\pi }}}e^{-{\tfrac {\alpha }{2}}(t-t_{i})^{2}+j\omega _{i}t}}
S A F s ( θ , τ ) = i = 1 2 S A F s i ( θ , τ ) + S A F s 1 , s 2 ( θ , τ ) + S A F s 2 , s 1 ( θ , τ ) {\displaystyle \Rightarrow SAF_{s}(\theta ,\tau )=\sum _{i=1}^{2}SAF_{si}(\theta ,\tau )+SAF_{s1,s2}(\theta ,\tau )+SAF_{s2,s1}(\theta ,\tau )}

从范例中得知一项重要事实,即为,在模糊域(ambiguity domain)中的auto-term总是集中在原点(0,0),而cross-term总是在远离原点处,所以可以用一个2D lowpass filter在模糊域中抑制cross-term的干扰,如下:
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau } ,其中 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} 为2D lowpass filter

如果 Φ ( θ , τ ) d θ d τ = ϕ ( t , ω ) {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\Phi (\theta ,\tau )\,d\theta \,d\tau =\phi (t,\omega )} ,则
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau }
= ϕ ( x , y ) W D s ( t x , ω y ) d x d y = S W D ( t , ω ) {\displaystyle =\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\phi (x,y)WD_{s}(t-x,\omega -y)\,dx\,dy=SWD(t,\omega )}

通常 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} ( 和 ϕ ( t , ω ) {\displaystyle \phi (t,\omega )} )当作kernal function,用来控制SWD的特性。


若Wigner分布和对称模糊函数用大小(magnitude)及相位(phase)表示,如下:
W D s 1 , s 2 ( t , ω ) = A W D ( t , ω ) e j φ W D ( t , ω ) {\displaystyle WD_{s1,s2}(t,\omega )=A_{WD}(t,\omega )e^{j\varphi _{WD}(t,\omega )}}
S A F s 1 , s 2 ( θ , τ ) = A S A F ( θ , τ ) e j φ S A F ( θ , τ ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=A_{SAF}(\theta ,\tau )e^{j\varphi _{SAF}(\theta ,\tau )}}
θ φ S A F ( θ , τ ) = t u {\displaystyle {\frac {\partial }{\partial \theta }}\varphi _{SAF}(\theta ,\tau )=-t_{u}} , τ φ S A F ( θ , τ ) = ω u {\displaystyle {\frac {\partial }{\partial \tau }}\varphi _{SAF}(\theta ,\tau )=\omega _{u}}
也就是说对对称模糊函数的相位做偏微分,会等于Wigner分布的时频(time-frequency)中心。
相反地, ω φ W D ( t , ω ) = t d {\displaystyle {\frac {\partial }{\partial \omega }}\varphi _{WD}(t,\omega )=t_{d}} , t φ W D ( t , ω ) = ω d {\displaystyle {\frac {\partial }{\partial t}}\varphi _{WD}(t,\omega )=\omega _{d}}
则为对Wigner分布的相位做偏微分,会等于对称模糊函数的中心。


如果 ω 1 = ω 2 = ω 0 {\displaystyle \omega _{1}=\omega _{2}=\omega _{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j ( ω 0 τ θ t u ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j(\omega _{0}\tau -\theta t_{u})}}
会集中在 τ {\displaystyle \tau } 轴上。


如果 t 1 = t 2 = t 0 {\displaystyle t_{1}=t_{2}=t_{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j}}
会集中在 θ {\displaystyle \theta } 轴上。

相关

  • 超嗜热超嗜热生物指能在极热的环境(60°C以上)中生活的生物。其生长最适温度通常在80~110°C,而2003年发现的一株古菌“菌株121”甚至能在和灭菌锅相同的温度,即121°C下,24个小时内,细
  • 视网膜色素变性视网膜色素变性,或称视网膜色素病变(Retinitis Pigmentosa,简称RP),是一种遗传性眼科疾病。初期普遍的病征是夜盲、视野变窄,可以看到正前方景物,但略偏左右的视野就无法看见,RP病人
  • 佩加索斯珀伽索斯(古希腊语:Πήγασος,Pégasos,拉丁语:Pegasus),又称佩格索斯,俗称天马或飞马,是希腊神话中著名的奇幻生物。他是一匹长有双翼的马,通常为白色。他是美杜莎与海神波塞冬
  • SIV猴病毒(英语:Simian immunodeficiency virus,简称SIV),也称为非洲绿猴病毒(英语:African Green Monkey virus),是一种可影响至少33种非洲灵长目的逆转录病毒。在对比奥科岛(于大约1100
  • 黄道蟹派黄道蟹总科(学名:Cancroidea)是短尾下目下的一个总科,原来有六个科,现时只有近圆蟹科和黄道蟹科两个科。黄道蟹总科之下现时只有两个科黄道蟹总科原来有六个科,除了上述两个科以外
  • 疣猴属疣猴属(学名:),灵长目、猴科的一属,包括五种:
  • 萨沙·吉特里亚历山大·吉特里, 被称为 萨沙·吉特里(法语:Sacha Guitry,1885年2月21日-1957年7月24日), 是法国剧作家, 演员, 导演和编剧, 生于圣彼得堡 (俄罗斯),于巴黎过世.作为一名多产的
  • 谢尔盖·阿尔谢尼耶维奇·戈格利泽谢尔盖·阿尔谢尼耶维奇·戈格利泽(俄语:Сергей (Серго) Арсеньевич (Арсентьевич) Гоглидзе,1901年-1953年12月23日)格鲁吉亚人,主持格
  • 崇绶崇绶(1785年-19世纪?),字鹏衔,号蓝坡,章佳氏,满洲正白旗人。嘉庆甲子恩科举人,十年乙丑恩科进士,选翰林院庶吉士,散馆后改任侍卫,官至理藩院刑部主事,兵部员外郎。父那彦宝,堂叔那彦成为乾
  • 足球尤物《足球尤物》(英语:)又名为球爱可人儿,是2006年发行的美国浪漫喜剧电影,由安迪·菲克曼执导,改编自威廉·莎士比亚的戏剧作品《第十二夜》。电影由亚曼达·拜恩斯、查宁·塔图、