模糊函数与韦格纳分布的关系

✍ dations ◷ 2025-09-18 16:11:10 #信号处理

模糊函数(Ambiguity function,AF):
A F s ( θ , τ ) = s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle AF_{s}(\theta ,\tau )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\theta t}\,dt} 韦格纳分布(Wigner distribution,WD):
W D s ( t , ω ) = s ( t + τ 2 ) s ( t τ 2 ) e j ω τ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{-j\omega \tau }\,d\tau }

一个讯号s(t),自相关函数为 R ( τ ) = s ( t ) s ( t τ ) d t {\displaystyle R(\tau )=\int _{-\infty }^{\infty }s(t)s^{*}(t-\tau )\,dt} 如果 R ( τ ) {\displaystyle R(\tau )} 为时间相依性(time-dependent),则时间相依自相关(time-dependent auto-correlation)为 R ( t , τ ) {\displaystyle R(t,\tau )} ,时间相依(时变)频谱(time-dependent spectrum)可以表示的形式类似于传统的功率谱,即对时间相依自相关函数做傅立叶变换。
P ( t , ω ) = R ( t , τ ) e j ω τ d τ {\displaystyle P(t,\omega )=\int _{-\infty }^{\infty }R(t,\tau )e^{-j\omega \tau }\,d\tau }
不同的时间相依自相关会导致不同的时间相依功率谱。
如果 R ( t , τ ) = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle R(t,\tau )=s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} ,则时间相依功率谱变成为Wigner distribution
若对 R ( t , τ ) {\displaystyle R(t,\tau )} 中的t做傅立叶逆转换,得到另一个时频表示,对称模糊函数(symmetric ambiguity function,SAF)
S A F s ( θ , τ ) = 1 2 π s ( t + τ 2 ) s ( t τ 2 ) e j θ t d t {\displaystyle SAF_{s}(\theta ,\tau )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)e^{j\theta t}\,dt} 模糊函数反映信号在时间和相位的相关性,并已广泛应用在雷达和声纳系统上。给一个对称模糊函数 S A F s ( θ , τ ) {\displaystyle SAF_{s}(\theta ,\tau )} ,透过傅立叶变换可以得到时间相依自相关:
S A F s ( θ , τ ) e j θ t d θ = s ( t + τ 2 ) s ( t τ 2 ) {\displaystyle \int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j\theta t}\,d\theta =s\left(t+{\frac {\tau }{2}}\right)s^{*}\left(t-{\frac {\tau }{2}}\right)} 由上式可以推得
W D s ( t , ω ) = S A F s ( θ , τ ) e j ( ω τ + θ t ) d θ d τ {\displaystyle WD_{s}(t,\omega )=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )e^{-j(\omega \tau +\theta t)}\,d\theta \,d\tau }
也就是对对称模糊函数做两次傅立叶变换可以得到Wigner distribution

一个讯号为两个Gaussian函数的和:
s ( t ) = i = 1 2 s i ( t ) = i = 1 2 α π 4 e α 2 ( t t i ) 2 + j ω i t {\displaystyle s(t)=\sum _{i=1}^{2}s_{i}(t)=\sum _{i=1}^{2}{\sqrt{\frac {\alpha }{\pi }}}e^{-{\tfrac {\alpha }{2}}(t-t_{i})^{2}+j\omega _{i}t}}
S A F s ( θ , τ ) = i = 1 2 S A F s i ( θ , τ ) + S A F s 1 , s 2 ( θ , τ ) + S A F s 2 , s 1 ( θ , τ ) {\displaystyle \Rightarrow SAF_{s}(\theta ,\tau )=\sum _{i=1}^{2}SAF_{si}(\theta ,\tau )+SAF_{s1,s2}(\theta ,\tau )+SAF_{s2,s1}(\theta ,\tau )}

从范例中得知一项重要事实,即为,在模糊域(ambiguity domain)中的auto-term总是集中在原点(0,0),而cross-term总是在远离原点处,所以可以用一个2D lowpass filter在模糊域中抑制cross-term的干扰,如下:
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau } ,其中 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} 为2D lowpass filter

如果 Φ ( θ , τ ) d θ d τ = ϕ ( t , ω ) {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\Phi (\theta ,\tau )\,d\theta \,d\tau =\phi (t,\omega )} ,则
S A F s ( θ , τ ) Φ ( θ , τ ) e j ( θ t + ω τ ) d θ d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }SAF_{s}(\theta ,\tau )\Phi (\theta ,\tau )e^{-j(\theta t+\omega \tau )}\,d\theta \,d\tau }
= ϕ ( x , y ) W D s ( t x , ω y ) d x d y = S W D ( t , ω ) {\displaystyle =\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\phi (x,y)WD_{s}(t-x,\omega -y)\,dx\,dy=SWD(t,\omega )}

通常 Φ ( θ , τ ) {\displaystyle \Phi (\theta ,\tau )} ( 和 ϕ ( t , ω ) {\displaystyle \phi (t,\omega )} )当作kernal function,用来控制SWD的特性。


若Wigner分布和对称模糊函数用大小(magnitude)及相位(phase)表示,如下:
W D s 1 , s 2 ( t , ω ) = A W D ( t , ω ) e j φ W D ( t , ω ) {\displaystyle WD_{s1,s2}(t,\omega )=A_{WD}(t,\omega )e^{j\varphi _{WD}(t,\omega )}}
S A F s 1 , s 2 ( θ , τ ) = A S A F ( θ , τ ) e j φ S A F ( θ , τ ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=A_{SAF}(\theta ,\tau )e^{j\varphi _{SAF}(\theta ,\tau )}}
θ φ S A F ( θ , τ ) = t u {\displaystyle {\frac {\partial }{\partial \theta }}\varphi _{SAF}(\theta ,\tau )=-t_{u}} , τ φ S A F ( θ , τ ) = ω u {\displaystyle {\frac {\partial }{\partial \tau }}\varphi _{SAF}(\theta ,\tau )=\omega _{u}}
也就是说对对称模糊函数的相位做偏微分,会等于Wigner分布的时频(time-frequency)中心。
相反地, ω φ W D ( t , ω ) = t d {\displaystyle {\frac {\partial }{\partial \omega }}\varphi _{WD}(t,\omega )=t_{d}} , t φ W D ( t , ω ) = ω d {\displaystyle {\frac {\partial }{\partial t}}\varphi _{WD}(t,\omega )=\omega _{d}}
则为对Wigner分布的相位做偏微分,会等于对称模糊函数的中心。


如果 ω 1 = ω 2 = ω 0 {\displaystyle \omega _{1}=\omega _{2}=\omega _{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j ( ω 0 τ θ t u ) {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j(\omega _{0}\tau -\theta t_{u})}}
会集中在 τ {\displaystyle \tau } 轴上。


如果 t 1 = t 2 = t 0 {\displaystyle t_{1}=t_{2}=t_{0}} ,则
S A F s 1 , s 2 ( θ , τ ) = e e j {\displaystyle SAF_{s1,s2}(\theta ,\tau )=e^{-}e^{j}}
会集中在 θ {\displaystyle \theta } 轴上。

相关

  • 原子论原子论(英语:Atomism,来自古希腊语atomos,含义为“不可分割”)是在一些古代传统中发展出的一种自然哲学。原子论者将自然世界理论化为由两基本部分所构成:不可分割的原子和空无的
  • 土壤生态学土壤学是研究土壤及其生成的学科,是自然地理学的分支。它对研究植物的生长,繁殖以至分布都起着重要影响。 从农业角度来看,土壤是指陆地上能够让植物生长的疏松表层。英语pedo
  • 寡毛亚纲寡毛纲(学名:Oligotrichea)之下只有下列两个亚纲:
  • 管弦乐团管弦乐团(英语:Orchestra)是当今世上编制最庞大、最复杂的乐团型态,拥有极强大而广泛之音乐表现力。管弦乐团一般演奏古典音乐或为歌剧伴奏,有时也会替流行音乐伴奏;现代不少管弦
  • 默莉·顾斯劳默莉·顾斯劳(印尼语:Melly Goeslaw,1974年1月7日-),本名Mellyana Goeslaw Hoed,印尼创作型女歌手,曾演唱Gantung等歌曲。
  • 科林西亚酒店科林西亚酒店(俄语:Невский Палас)是俄罗斯圣彼得堡的一家五星级酒店。科林西亚酒店旧名涅瓦宫酒店,是圣彼得堡最高级的酒店之一,位于涅瓦大街上。科林西亚酒店和阿
  • 卡拉恩瓦利卡拉恩瓦利(Kalan Wali),是印度哈里亚纳邦Sirsa县的一个城镇。总人口25155(2001年)。该地2001年总人口25155人,其中男性13283人,女性11872人;0—6岁人口3377人,其中男1872人,女1505人;
  • 圣诞快乐,劳伦斯先生《圣诞快乐,劳伦斯先生》(英语:、日语:戦場のメリークリスマス,部分欧洲国家名为,港译《战场上的快乐圣诞》,台译《俘虏》)是一套1983年出品的剧情片,由日本电影导演大岛渚所执导,这也
  • 米科拉·邦达尔米科拉·谢尔盖耶维奇·邦达尔(乌克兰语:Микола Сергійович Бондарь,英语:Mykola Serhiyovych Bondar;1990年5月22日-2020年2月15日),又名尼古拉·邦达尔(Nik
  • 裴蜀定理在数论中,裴蜀等式(英语:Bézout's identity)或裴蜀定理(Bézout's lemma)是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数