波利亚计数定理

✍ dations ◷ 2025-12-01 06:14:47 #组合数学

波利亚计数定理(英语:Pólya enumeration theorem,简称PET)用来研究不同着色方案的计数问题,它是组合数学中的一个重要的计数公式,是伯恩赛德引理的一般化,由波利亚·哲尔吉在1937年的论文中提出并被广泛应用,该结果首先由John Howard Redfield在1927年发表,但当时很少有人能理解,十年后由波利亚独立重新发现。对于含n个对象的置换群G,用t种颜色着色的不同方案数为:

其中 G = a 1 , a 2 , . . . , a g , c ( a k ) {\displaystyle G={a_{1},a_{2},...,a_{g}},c(a_{k})} 为置换 a k {\displaystyle a_{k}} 的循环指标(Cycle index)数目。

设对n个对象用m种颜色: b 1 , b 2 , , b m {\displaystyle b_{1},b_{2},\cdots ,b_{m}} 着色。设

m c ( p i ) = ( b 1 + b 2 + + b m ) c 1 ( p i ) ( b 1 2 + b 2 2 + + b m 2 ) c 2 ( p i ) ( b 1 n + b 2 n + + b m n ) c n ( p i ) {\displaystyle m^{c(p_{i})}=(b_{1}+b_{2}+\cdots +b_{m})^{c_{1}(p_{i})}(b_{1}^{2}+b_{2}^{2}+\cdots +b_{m}^{2})^{c_{2}(p_{i})}\cdots (b_{1}^{n}+b_{2}^{n}+\cdots +b_{m}^{n})^{c_{n}(p_{i})}} ,其中 c j ( p i ) {\displaystyle c_{j}(p_{i})} 表示置换群中第i个置换循环长度为j的个数。

S k = ( b 1 k + b 2 k + + b m k ) , k = 1 , 2 , n {\displaystyle S_{k}=(b_{1}^{k}+b_{2}^{k}+\cdots +b_{m}^{k}),k=1,2\cdots ,n} ,则波利亚计数定理的母函数形式为:

P ( G ) = 1 G j = 1 g Π k = 1 n S k c k ( p j ) {\displaystyle P(G)={\frac {1}{\mid G\mid }}\sum _{j=1}^{g}\Pi _{k=1}^{n}S_{k}^{c_{k}(p_{j})}}

波利亚计数定理只是给出计数,但没有给出相应的方案,而母函数形式的波利亚计数定理可以给出相应的方案。

使用两种颜色对正方体的六个面的面染色,不同的染色方案数有:

甲烷CH4的4个键任意用H(氢),Cl(氯),CH3(甲基), C2H5(乙基) 连接,有多少种方案? 

甲烷的结构为正四面体,设四面体的四个顶点分别为A、B、C、D,将正四面体的转动群按转动轴分类情况如下:

根据波利亚计数定理可得:

1 12 ( 4 4 + 8 × 4 2 + 3 × 4 2 )   = 36 {\displaystyle {\frac {1}{12}}\left(4^{4}+8\times 4^{2}+3\times 4^{2}\right)\ =36}

相关

  • 航海航海,是人类在海上航行,跨越海洋,由一方陆地去到另一方陆地的活动。在从前是一种冒险行为,因为人类的地理知识有限,彼岸是不可知的世界。从冒险行为,慢慢的转变于一种商业行为,因为
  • 19-去甲睾酮19-去甲睾酮(英语:19-nortestosterone)也被称为诺龙(Nandrolone)是一种雄激素和同化类固醇(AAS)。其酯类衍生物(如其苯丙酸酯、癸酸酯等)常作为贫血、恶病体质、骨质疏松症、乳癌的治
  • Cusub2/subS硫化亚铜,分子式为Cu2S,在自然界中形成辉铜矿。硫化亚铜有很窄的化学计量变化范围: Cu1.997S至Cu2.000S。Cu2S可由热的铜在硫蒸气或H2S反应制得。铜粉在熔融的硫中快速反应生成
  • 摩擦音在语音学上,擦音(或摩擦音,fricative consonant)是辅音的一种发音方法。发音时,两个发音器官彼此靠拢,形成狭窄的通道,气流通过时造成湍流发生摩擦,发出噪音。与塞音不同,擦音可以持
  • 2020年5月逝世人物列表2020年5月逝世人物列表,是用于汇总2020年5月期间逝世人物的列表。
  • 聪明行动族聪明行动族(英语:smart mob)是个由霍华德.瑞格德的书中-里所引进的概念。根据瑞格德所述,聪明行动族显示出了可使加强人民力量的通讯技术正不断地进化中。这些成长中的技术包括互
  • 张詧张詧(1851年-1939年1月26日),字叔俨,小名长春,号退庵、退翁,江苏南通人,为张謇的三兄,人称张三先生,自称张叔子。中国实业家。光绪五年(1879年)四月,他报捐县丞,光绪十五年(1889年)他任南昌
  • 威利·梅塞施密特威廉·艾梅尔·“威利”· 梅塞施密特(Wilhelm Emil "Willy" Messerschmitt,1898年6月26日-1978年9月15日)是一位著名的德国飞机设计家和制造家。梅塞施密特出生在德国法兰克福,
  • 单亦和单亦和(1944年3月-2019年11月17日),山东诸城人,中华人民共和国政治人物,原国有重点大型企业监事会主席,中国保利集团有限公司原董事长、党组书记。
  • 周国丰周国丰可以指: