首页 >
演绎推理
✍ dations ◷ 2025-09-18 03:55:03 #演绎推理
演绎推理(英语:Deductive Reasoning)、正向推理在传统的亚里士多德逻辑中是“结论,可从叫做‘前提’的已知事实,‘必然地’得出的推理”。如果前提为真,则结论必然为真。这区别于溯因推理和归纳推理:它们的前提可以预测出高概率的结论,但是不确保结论为真。“演绎推理”还可以定义为结论在普遍性上不大于前提的推理,或“结论在确定性上,同前提一样”的推理。任何三角形只可能是锐角三角形、直角三角形和钝角三角形。——大前提这个三角形既不是锐角三角形,也不是钝角三角形。——小前提所以,它是一个直角三角形。——结论更加形式化的说,演绎是陈述的序列,每个陈述都可以从它前面的陈述推导出来。本质上,这导致了如何证明第一个句子的公开问题(因为它不能从任何事物得到)。公理化命题逻辑通过要求证明满足下列条件来解决这个问题:来自 wff 的全体 Σ 的证明 α 是一个 wff 的有限序列:这里的并且对于每个 βi (1 ≤ i ≤ n),不同版本的公理化命题逻辑都包含一些公理,通常是三个或多于三个,除了一个或更多的推理规则之外。例如弗雷格公理化的命题逻辑,它也是这种尝试的第一个实例,有六个命题公理和两个规则。伯特兰·罗素和阿尔弗雷德·诺思·怀特黑德也提议了有五个公理的一个系统。例如扬·武卡谢维奇(Jan Łukasiewicz,1878年-1956年)版本的公理化命题逻辑有接受如下公理的公理集合 A:并且它有有一个规则的推理规则的集合 R,这个规则就是下面的肯定前件:推理规则允许我们从公理或给定的全体 Σ 的 wff 推导出陈述。在 E.J. Lemmon 提出的我们称为系统 L 的一个版本的自然演绎逻辑中,我们首先没有任何公理。我们只有支配证明的语法的九个基本规则。系统 L 的九个基本规则是:在系统 L 中,证明的定义有下列条件:如果没有前提给出,则相继式叫做定理。所以在系统 L 中定理的定义是:或者换句话说:相继式的证明的一个例子(这里是否定后件):相继式证明的一个例子(这里是一个定理):系统 L 的每行都有自己对输入或进入的类型的要求,它可以接受并且拥有它自己的处理和计算于是它的输入使用的假定的方式。
相关
- LCCN美国国会图书馆控制号(英语:Library of Congress Control Number,简称LCCN)是美国国会图书馆用于图书记录、编码和查询的序列号。每一本书籍都有相对应的控制号。该号码与书籍内
- 游戏障碍游戏成瘾(英文:Video game addiction,缩写:VGA)是一种特殊的成瘾行为,其特征为过度或强迫性游戏以致影响正常生活。目前游戏成瘾的定义在医学界仍是极具争议的,没有确切的证据表明
- 竞争排除原则竞争排除原则(也称竞争排斥原理或高斯定理)在生态学里指的是,两个物种不能同时,或者是不能长时间地在同一个生态区位生存。因为两者之间会展开竞争,导致其中的一方获胜,可以留在原
- 基因突变突变(英语:Mutation,即基因突变)在生物学上的含义,是指细胞中的遗传基因(通常指存在于细胞核中的去氧核糖核酸)发生的改变。它包括单个碱基改变所引起的点突变,或多个碱基的缺失、重
- 法罗群岛坐标:61°57′15″N 6°51′25″W / 61.95417°N 6.85694°W / 61.95417; -6.85694面积以下资讯是以2017年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2008年估计国内
- 黄铜黄铜(英语:Brass)是铜及锌的合金,因色黄而得其名。铜含量62%-75%的黄铜,其熔点为934-967度。黄铜的机械性能和耐磨性能都很好,可用于制造精密仪器、船舶的零件、枪炮的弹壳、硬币(如
- 鹊鸲鹊鸲(学名:Copsychus saularis),又名猪屎渣、吱渣、信鸟或四喜,属鹟科鹊鸲属。分布于中国南部及南亚、东南亚国家。在印度它是一种观赏鸟,更是孟加拉国的国鸟。鹊鸲雄鸟体长19厘米
- 苏维汇人苏维汇人(拉丁语:Suebi或Suevi,其族名可能来自于原始日耳曼语*swēbaz)古代日耳曼人的一支,在导致西罗马帝国灭亡的蛮族入侵中发挥了一定作用。苏维汇人最早出现于史册中是在尤利
- 昆虫纲见内文昆虫在分类学上属于昆虫纲(学名:Insecta),是世界上最繁盛的动物,已发现超过100万种。其中单鞘翅目(Coleoptera)中所含的种数就比其它所有动物界中的种数还多。昆字原作䖵。昆
- 窦窦(英文:Sinus)指的是器官或组织的囊或腔室。窦可以是天生的也可以是后天由于组织受损而偶然生成的。例如鼻窦就是窦的一种。鼻窦位于人的头颅,在头骨之间、鼻腔周围的颅骨与脸