演绎推理

✍ dations ◷ 2025-12-11 12:08:13 #演绎推理
演绎推理(英语:Deductive Reasoning)、正向推理在传统的亚里士多德逻辑中是“结论,可从叫做‘前提’的已知事实,‘必然地’得出的推理”。如果前提为真,则结论必然为真。这区别于溯因推理和归纳推理:它们的前提可以预测出高概率的结论,但是不确保结论为真。“演绎推理”还可以定义为结论在普遍性上不大于前提的推理,或“结论在确定性上,同前提一样”的推理。任何三角形只可能是锐角三角形、直角三角形和钝角三角形。——大前提这个三角形既不是锐角三角形,也不是钝角三角形。——小前提所以,它是一个直角三角形。——结论更加形式化的说,演绎是陈述的序列,每个陈述都可以从它前面的陈述推导出来。本质上,这导致了如何证明第一个句子的公开问题(因为它不能从任何事物得到)。公理化命题逻辑通过要求证明满足下列条件来解决这个问题:来自 wff 的全体 Σ 的证明 α 是一个 wff 的有限序列:这里的并且对于每个 βi (1 ≤ i ≤ n),不同版本的公理化命题逻辑都包含一些公理,通常是三个或多于三个,除了一个或更多的推理规则之外。例如弗雷格公理化的命题逻辑,它也是这种尝试的第一个实例,有六个命题公理和两个规则。伯特兰·罗素和阿尔弗雷德·诺思·怀特黑德也提议了有五个公理的一个系统。例如扬·武卡谢维奇(Jan Łukasiewicz,1878年-1956年)版本的公理化命题逻辑有接受如下公理的公理集合 A:并且它有有一个规则的推理规则的集合 R,这个规则就是下面的肯定前件:推理规则允许我们从公理或给定的全体 Σ 的 wff 推导出陈述。在 E.J. Lemmon 提出的我们称为系统 L 的一个版本的自然演绎逻辑中,我们首先没有任何公理。我们只有支配证明的语法的九个基本规则。系统 L 的九个基本规则是:在系统 L 中,证明的定义有下列条件:如果没有前提给出,则相继式叫做定理。所以在系统 L 中定理的定义是:或者换句话说:相继式的证明的一个例子(这里是否定后件):相继式证明的一个例子(这里是一个定理):系统 L 的每行都有自己对输入或进入的类型的要求,它可以接受并且拥有它自己的处理和计算于是它的输入使用的假定的方式。

相关

  • 巨噬细胞巨噬细胞(英语:macrophage,缩写为mφ)是一种位于组织内的白细胞,源自单核细胞,而单核细胞又来源于骨髓中的前体细胞。巨噬细胞和单核细胞皆为吞噬细胞,在脊椎动物体内参与非特异性
  • 鸟苷鸟苷(Guanosine)是核苷的一种,是由鸟嘌呤与核糖(呋喃核糖)环组成,两者之间由β-N9-配糖键相连。鸟苷经过磷酸化之后可变成鸟苷单磷酸(GMP)、环鸟苷单磷酸(cGMP)、鸟苷双磷酸(GDP)或鸟苷
  • 人口控制人口控制指的是控制人口数量,以达到减轻资源负担及提高生活水平等目的。一般来说合理做法被认为是让总和生育率接近二。在非发达国家通常是指减少人口增长,一般是通过减少出生
  • 尿毒症性心包炎尿毒症性心包炎(Uremic pericarditis)是一种心包炎病症形式。它会导致纤维素性心包炎。其病因知之甚少。尿毒症性心包炎相关联于系统中的氮质血症(Azotemia)程度。BUN通常>6
  • 松果体松果体(又叫做松果腺、脑上体)是一个位于脊椎动物脑中的小内分泌腺体。人体最小的器官。它负责制造褪黑素,一种会对醒睡模式与(季节性)昼夜节律功能的调节产生影响的激素其形状像
  • 唐纳德·戴维森唐纳德·赫伯特·戴维森(英语:Donald Davidson,1917年3月6日-2003年8月30日)20世纪下半叶美国最为著名和活跃的哲学家之一。戴维森1917年3月6日生于美国麻省斯普林菲尔德。在早期
  • 尼采弗里德里希·威廉·尼采(德语:Friedrich Wilhelm Nietzsche/ˈniːtʃə/; 德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI"
  • 修道制度基督宗教中的修道制度是起因于反对教会逐渐世俗化,在3、4世纪时兴起。而更早的潜伏因素是在君士坦丁大帝统一教会及罗马帝国前,因基督教的宽柔政策,所以教会水准偏低、基督徒素
  • 鳄目鳄目(学名:Crocodilia)通称为鳄鱼,属于脊索动物门蜥形纲。分布于热带到亚热带的河川、湖泊、海岸中,现存24种。鳄目的体长范围从1.5米到7米;一些史前物种,例如晚白垩世的恐鳄,体长可
  • 南猿南猿,又称南方古猿类,是指两个非常接近的人亚族:南猿的祖先有可能是440万年前的地猿。人属有可能是于350万年前由南猿的祖先,即肯尼亚平脸人演化而来。另一个可能性是人属直接由