ε-均衡

✍ dations ◷ 2025-11-19 11:06:11 #ε-均衡

在博弈论中,ε-均衡(Epsilon-Equilibrium)是一个近似符合纳什均衡条件的策略组合,有时也称近似纳什均衡。

给定一个对策模型和一个非负实参数ε,一个策略组合被称为ε-均衡,当没有任何一个局中人能通过单方面改变他的策略而取得超过原先收益(Payoff)更多ε的收益。当ε=0时,每一个ε-均衡对应着一个纳什均衡。

从形式上来定义,令以下 G {\displaystyle G} 为N人对策模型:

G = ( N , A = A 1 × × A N ) {\displaystyle G=(N,A=A_{1}\times \cdots \times A_{N})} ,其中 A i {\displaystyle A_{i}} 为第 i {\displaystyle i} 个局中人的纯策略集, u : A R N {\displaystyle u:A\rightarrow \mathbb {R} ^{N}} 为效用函数。

当一组策略 σ Δ = Δ 1 × × Δ N {\displaystyle \sigma \in \Delta =\Delta _{1}\times \cdots \times \Delta _{N}} 满足以下条件时:

σ i Δ i , i N {\displaystyle \forall \sigma _{i}^{'}\in \Delta _{i},i\in N} ,有 u i ( σ ) u i ( σ i , σ i ) ϵ {\displaystyle u_{i}(\sigma )\geq u_{i}(\sigma _{i}^{'},\sigma _{-i})-\epsilon }

则称这个策略组合为该对策模型的一个ε-均衡。

ε-均衡的定义在随机博弈理论中可能出现的无限对策的情况下很重要,因为在一些简单的随机博弈的例子中,并没有纳什均衡点的存在,但有ε-均衡。


相关

  • 腹泻腹泻(俗称拉肚子,广东俗称肚痾,台语俗称漏屎,中医称之为泄泻,英语:diarrhea, diarrhœa来自希腊语:διάρροια,包含两个字根:“διά /dia,经过”,以及“ῥέω/rheo,流动”)的定
  • 人类生理学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学人体生理学(Human physiology)是研究
  • 一阶逻辑一阶逻辑是使用于数学、哲学、语言学及计算机科学中的一种形式系统。过去一百多年,一阶逻辑出现过许多种名称,包括:一阶断言演算、低端断言演算、量化理论或谓词逻辑。一阶逻辑
  • 核甘酸核苷酸(英语:Nucleotide)是核酸的基本组成单位。核苷酸以一个含氮碱基为核心,加上一个五碳糖和一个或者多个磷酸基团组成。含氮碱基有五种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸
  • 云孙孙是指子女的子女,男性称孙儿或孙子,女性称孙女。在父系社会,儿子的子女称为“内孙”或者“孙”,女儿的子女称为“外孙”。而自己的孙或外孙就称自己为祖父母或外祖父母。另外,闽
  • Hoffmann征在医学中,Hoffmann征指的是以德国生理学家Paul Hoffmann(英语:Paul Hoffmann (physiologist))(1884–1962)命名的一种远侧神经响应的表现。Hoffmann征(或Tinel征)是通过机械刺激受伤
  • 电影演员演员是指专职演出或在表演艺术作品扮演某个角色的人,广义上分为演技、杂技、特技、歌唱、舞蹈、戏曲、乐器几大流派,狭义上在电影、电视、剧场、广播等大众媒体当中专指演技演
  • 哈拉哈河诺门罕战役(苏联与蒙古称“哈拉哈河战役”、“哈拉欣河战役”,俄语:Бои на Халхин-Голе,日本称“诺门罕事件”,日语:ノモンハン事件)是大日本帝国及苏维埃联邦在远
  • 夫差夫差(前6世纪?-前473年),姬姓,春秋时期吴国第25任君主,在位时期为前495年—前473年。夫差生年不详。夫差为了洗雪其父阖闾败给越王勾践的耻辱,励精图治,吴国也迅速增强。夫差二年(前49
  • 柴油机柴油引擎(英语:Diesel Engine)又名压燃式发动机,是内燃机的一种。其主要特征为使用压缩产生高压及高温点燃气化燃料,而毋须另外提供点火。柴油引擎使用的原理称为狄塞尔循环,为德