首页 >
延胡索酸酶
✍ dations ◷ 2025-10-31 02:03:22 #延胡索酸酶
结构 / ECOD延胡索酸酶(或称延胡索酸水合酶)是一种催化延胡索酸(即反丁烯二酸)以及苹果酸之间水合/脱水的可逆反应。延胡索酸酶可分为线粒体内以及细胞质中两种,其中线粒体延胡索酸酶参与克氏循环(或称柠檬酸循环、三羧酸循环)而细胞质延胡索酸酶则参与了氨基酸和延胡索酸的代谢合成。
延胡索酸酶参与了柠檬酸循环以及还原型柠檬酸循环两种代谢路径,同时也与肾细胞癌有密切关联:在此段基因上的突变经常造成伴随着子宫和皮肤肌瘤的肾脏病。延胡索酸酶属于裂合酶家族中的脱水酶,可以切除化合物中的C-O键结。因为是可以将苹果酸((S)-malate)裂解为延胡索酸(fumarate)的裂解酶,其系统命名为:(S)-malate hydro-lyase (fumarate-forming)图二描绘了延胡索酸酶的反应机制:两个酸-碱基催化质子的转移,分别以两个基团的离子化状态定义为E1以及E2。在E1时,两个基团分别呈现A-H/B:的电中性状态。而E2时则呈现A-/BH+的两性离子状态。E1在进行催化反应后转化成E2,反之亦然。
E1与延胡索酸结合并将其水合为苹果酸;反之,E2与苹果酸结合并将其水解为延胡索酸。尽管它在生物中的重要性,我们对于延胡索酸酶的反应机制仍然有不明白之处:延胡索酸酶确实可以自行调控反应的方向,但是由苹果酸转成延胡索酸时移除HR(如图一)的pKa相当高,却不需要任何辅酶或者辅助因子参与即可进行反应。早先的研究认为:要由苹果酸合成延胡索酸时必须先将苹果酸水解为碳阳离子的中间产物,接着只要脱去Hα即可形成延胡索酸。反观其逆反应:将延胡索酸转化为苹果酸的机制就比较容易理解了。将延胡索酸转化为苹果酸的过程包含了借由羟基(-OH)的反式加成以及一个氢原子1,4反式加成,为一个具有立体专一性的水合作用。由以上可以看出:由延胡索酸合成苹果酸为E1脱去反应,H2O提供的羟基加成是伴随着延胡索酸上碳阳离子的质子化而来的。但是,近来的研究指出延胡索酸酶的反应机制应为以碳阴离子为中间物的酸-碱催化脱去反应(如图二)。在柠檬酸循环中(位于线粒体内)为了促进能量来源NADH的合成,细胞利用延胡索酸酶催化其中一个步骤。而在细胞质中,延胡索酸酶被用来代谢尿素循环的副产物延胡索酸,并利用这个反应合成氨基酸。研究显示延胡索酸酶的接合位被称为活性位A(site A),位于由氨基酸所组成的四聚酶其中三个次单元上,两个酸-碱催化活性位分别位于His 188 以及 Lys 324上。延胡索酸酶从次单元的排列、需要的金属离子以及热力学的稳定性可以分为第一型和第二型两种亚型。第一型会因为热或辐射线的影响而转换型态或转为不活化,第一型延胡索酸酶大约含有120kD的蛋白质、对超氧阴离子敏感且依赖铁二价离子(Fe2+)。第二型在真核生物以及原核生物中都可以发现,大小约为200kD,与第一型一样为依赖铁离子、热力学稳定的酵素。
原核生物中的延胡索酸酶可以再细分为三种:A、B和C,其中延胡索酸酶C属于以上分类的第二型,而在大肠杆菌中发现的延胡索酸酶A、B则属于第一型。延胡索酸缺乏症的主要特征有两种:羊水过多以及胎儿脑部发育异常。出生后的婴儿会表现出强烈的神经异常,并有拒食、发育不全以及肌张力低下等症状。延胡索酸缺乏症因为代谢途径的缺陷,被认为会对婴儿造成严重的多重神经异常。延胡索酸缺乏症的患者不论是细胞质或是线粒体中的延胡索酸酶皆处于非活化状态,故可以在尿液中检测出高浓度的延胡索酸。延胡索酸酶不论在成人或是婴儿体内都是相当常见的酵素,大多数的延胡索酸酶分布在皮肤、副甲状腺、淋巴系统以及结肠。随着观察许多与延胡索酸代谢途径相关的突变,发现了许多与延胡索酸酶相关的疾病,包含了:良性子宫肌瘤、平滑肌瘤、肾细胞癌以及延胡索酸缺乏症等。基因
FH基因位于染色体上1q42.3-q43的位置,包含10个外显子。蛋白质
取自于大肠杆菌的延胡索酸酶C的结晶结构具有两个二羧酸的结合位,即为延胡索酸酶C的活性位。而B位(B site)也有一个可供配体结合的闲置区。这样的结晶构造会保留水分子在活性区,而在B位(B site)则观察到His129的地方有一个转移区(shift)。这些显示著延胡索酸酶C利用B位(B site)的构形改变以及imidazole-imidazolium(咪唑-咪唑离子)调控来催化反应。EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22
·
2.1/2/3/4/5/6/7(2.7.10/11-12)/8/9
·
3.1/2/3/4(3.4.21/22/23/24)/5/6/7/8/9/10/11/12/13
·色氨酸代谢(犬尿氨酸酶)嘧啶代谢(二氢乳清酸脱氢酶)线粒体穿梭(苹果酸-天冬氨酸穿梭、甘油磷酸穿梭)类固醇生成(胆固醇侧链裂解酶、类固醇11-β-羟化酶、醛固酮合成酶)
其他(回补反应(天冬氨酸氨基转移酶、谷氨酸脱氢酶、丙酮酸脱氢酶复合体)尿素循环(氨甲酰磷酸合成酶I、鸟氨酸转氨甲酰酶、N-乙酰谷氨酸合酶)乙醇代谢(ALDH2)三磷酸腺苷合酶(MT-ATP6、MT-ATP8)
相关
- 冠状动脉疾病冠状动脉疾病(英语:coronary artery disease, CAD)又称为缺血性心脏病或简称冠心病(英语:ischemic heart disease, IHD)、冠状动脉粥状硬化心脏病、冠状动脉粥状硬化心血管疾病(英
- 病历病历即医疗记录的集合,是民众至医疗机构接受医疗服务的所有医事相关记录。病历资料来源基本上是由医务人员,如医师、护理师、医技、麻配师、复健师、营养师等,在问诊、体格检查
- 联合国新闻部联合国新闻部(英语:United Nations Department of Global Communications)是联合国秘书处的一个部门。它的任务是通过战略宣传运动、媒体和与民间社会团体的关系,提高公众对联合
- 亚太地区亚太地区,全称为亚洲及太平洋地区,缩写为APAC,是西太平洋地区周边国家包括岛屿的总称。亚太地区在狭义上,是指东亚、东南亚等太平洋西岸的亚洲地区、大洋洲、以及太平洋上的各岛
- 南捷克州南波希米亚州 (捷克语:Jihočeský kraj)是捷克波希米亚地区南部 (也包括摩拉维亚西南部的一部分)的一个州。面积10,056 平方公里,人口627,766 (2006年)。首府捷克布杰约维采
- 墨尔森梅尔森(荷兰语:Meerssen)是荷兰的一座城市和市镇,位于荷兰东南部,在行政区划上属于林堡省。《梅尔森条约》于870年在这里签署。
- 扁桃扁桃(Prunus dulcis),是梅亚科李属的植物。这种植物原产于波斯,唐朝的《酉阳杂俎》、《岭表录异》对“偏桃木”有所记载。不同于同属李属的李子、樱桃等水果,扁桃主要用作食用的
- 策梅洛恩斯特·策梅洛(德语:Ernst Friedrich Ferdinand Zermelo,1871年7月27日-1953年5月21日),生于柏林,是德国数学家,其工作主要为数学基础,因而对哲学有重要影响。1889年,他毕业于柏林Lui
- 桥梁桥或桥梁是跨越峡谷、山谷、道路、铁路、河流、其他水域、或其他障碍而建造的结构,是一种由水面或地面突出来的高架,用来连着桥头桥尾两边路。桥的目的是允许人、车辆、火车或
- 奶豆腐奶豆腐,蒙古民族奶食品之一,属于奶制品。 其作法先将酸奶子中的奶油提取出后,将其中水分煮干使其凝固,再放入模子中成型或以布袋挤压成型之后晒干可食用且便有保存。奶豆腐可分
