缩放

✍ dations ◷ 2025-11-22 11:31:25 #缩放
在欧几里得几何中,均匀缩放是放大或缩小物体的线性变换;缩放因子在所有方向上都是一样的;它也叫做位似变换。均匀缩放的结果相似(在几何意义上)于原始的物体。更一般的是在每个坐标轴方向上的有单独缩放因子的缩放;特殊情况是方向缩放(在一个方向上)。形状可能变化,比如矩形可能变成不同形状的矩形,还可能变成平行四边形(保持在平行于轴的线之间的角度,但不保持所有的角度)。缩放可以表示为缩放矩阵。要用一个向量v = (vx, vy, vz)缩放一个物体,每个点p = (px, py, pz)都需要乘以缩放矩阵:如下所示,这个乘法将给出预期的结果:这种缩放按在缩放因子中间的一个因子改变物体的直径,那在在两个缩放因子的最小和最大乘积之间的一个因子改变它的面积,按所有三个缩放因子的乘积改变它的体积。在最一般意义上的缩放是使用可对角化矩阵的任何仿射变换。它包括缩放的三个方向不垂直的情况。它还包括一个或多个缩放因子等于零的情况(投影),和一个或多个负缩放因子的情况。使用齐次坐标经常是更加有用的,因为3次元的平移(仿射变换)不能用3×3矩阵完成。要按一个向量v = (vx, vy, vz)缩放一个物体,所有的齐次向量p = (px, py, pz, 1)都需要乘以缩放矩阵:如下所示,这个乘法给出预期的结果:缩放是均匀的,当且仅当缩放因子是相等的。如果除了一个因子之外所有缩放因子都是1我们得到方向缩放。因为齐次坐标的最后成员可以看作其他三个成员的分母,使用公共因子s的缩放可以使用如下缩放矩阵完成:对于每个齐次向量p =(px, py, pz, 1),我们有它将均质于

相关

  • 药物化学药物化学(英语:Medicinal chemistry),简称药化,是建立在化学和生物学基础上,对药物结构和活性进行研究的一门学科。研究内容涉及发现、修饰和优化先导化合物,从分子水平上揭示药物
  • 线粒体脑肌病线粒体脑肌病是一种由线粒体的代谢缺陷脱引起的脑肌病,属于线粒体疾病。此病由Luft于1962年首次采用改良戈莫理氏染色法(Gömöri trichrome stain,MGT)发现。在活体检查中,患者
  • Blumenbach约翰·弗里德里希·布卢门巴赫(Johann Friedrich Blumenbach,1752年5月11日-1840年2月22日)是一位德国医学家、生理学家、人类学家。他是首先把人类当做自然史研究对象的人之一,
  • 氧化性非金属性(氧化性)指原子、分子或离子在化学反应中吸收电子能力。吸收电子能力越强的粒子其非金属性也就越强;反之则越弱,而其金属性(还原性)就越强。非金属性最强的元素是氟。值得
  • 反对党领袖政治主题女王陛下最忠心反对党领袖(Leader of Her Majesty's Most Loyal Opposition in the United Kingdom),是领导女王陛下最忠诚的在野党的英国政治家。领导上议院反对党的
  • 耐力耐久力(英语:Endurance)是指生命体发挥自己的功能并在长时间内保持活跃的能力,也可指它抗击、经受、回复、免疫损害、伤口、疲倦的能力。这个词通常会在进行有氧运动和无氧运动
  • 超自然研究超自然(Supernatural)又称灵异现象,包含了超自然现象和超自然力量,即无科学根据而所谓在自然界的力量或现象。一旦超自然能够被证实,则它就不再是超自然了。超自然超出科学的范畴
  • 20世纪60年代非洲从殖民主义到独立的转变,被称为非洲的非殖民化急剧加速的十年时代,在1960年和1968年之间,共有32个国家独立。意味着欧洲殖民帝国统治非洲大陆的结束,然而,这些新国家的崇高愿
  • 澳大利亚公共假日澳大利亚公众假期:各州对于劳动节有不同的放假日期:其他各州的节日:纪念日:
  • 物理理论理论物理学(英语:Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。:9丰富的想像力、精湛