矩阵力学

✍ dations ◷ 2025-07-13 16:27:41 #矩阵力学
矢量 · 矢量空间  · 行列式  · 矩阵标量 · 矢量 · 矢量空间 · 矢量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征矢量 · 最小二乘法 · 格拉姆-施密特正交化 ·矩阵力学是量子力学其中一种的表述形式,它是由海森堡、玻恩和约尔当(P. Jordan)于1925年完成的。矩阵力学的思想出发点是针对玻尔模型中许多观点,诸如电子的轨道、频率等,都不是可以直接观察的。反之,在实验中经常接触到的是光谱线的频率、强度、偏极化,以及能级。海森堡计划创造一个理论,只是用光谱线的频率、强度、偏极化等观念。他的做法是受到爱因斯坦在相对论中对时间、空间作“操作定义”分析的影响。凡是矩阵力学,皆可建于以下的假定:h ν n 1 n 2 = E n 1 n 1 − E n 2 n 2 {displaystyle hnu _{{n_{1}}{n_{2}}}=E_{{n_{1}}{n_{1}}}-E_{{n_{2}}{n_{2}}},} 这个条件是由玻尔的频率条件直接得来;但对易关系是如何引进的呢?如何得知新的力学形式是用矩阵去表达的呢? 其实海森堡的思想来源是先来自周期系统的解;周期系统的解全都可用傅里叶级数去展示:在此的 q n = 1 2 ( a n − i b n ) {displaystyle q_{n}={frac {1}{2}}(a_{n}-ib_{n}),} , q − n = q n ∗ {displaystyle q_{-n}=q_{n}^{*},} 。 傅里叶级数有一个特点,就是对它进行运算,例如相加、相乘或微分,都不会产生除了 n ν ( n = 1 , 2 , ⋯ ) {displaystyle nnu ,(n=1,2,cdots ),} 以外的新频率系列。 但原子系统的频率是不能用傅里叶级数去表示,而是有一个叫里兹组合原则的经验关系:如果频率能表示为经验项之差(如氢原子的里德伯公式):里兹组合原则即可满足,而在这里原子系统形成一个“二维”的系统;对于频率的“二维”本性,海森堡用“二维”的广义坐标去取代傅里叶分量 q n e 2 π i n ν t {displaystyle q_{n}e^{2pi innu t},} 。而为了模拟傅里叶级数,要求“二维”数集有以下关系:至于谱线 ν n 1 n 2 {displaystyle nu _{{n_{1}}{n_{2}}},} 的幅度及偏振分别由 | q n 1 n 2 | 2 {displaystyle |q_{{n_{1}}{n_{2}}}|^{2},} 及 q n 1 n 2 {displaystyle q_{{n_{1}}{n_{2}}},} 复数的相位去表示。从里兹组合原则及对应原理,可以知道这类“二维”数集的乘法规则是:以使“二维”数集的运算,都不会产生 ν n 1 n 2 {displaystyle nu _{{n_{1}}{n_{2}}},} 以外的新频率,如海森堡只凭这些结果,就能得到谐振子的零点能是 1 2 h ν {displaystyle {frac {1}{2}}hnu ,} ,但计算其间要多次运用对应原理,先引入玻尔-索末菲量子条件 J = ∮ ⁡ p d q = n h {displaystyle J=oint p,dq=nh,} ,利用经典物理去估算量子物理的结果。接着海森堡将他的结果转寄给玻恩,玻恩对于这些“二维”数集初时亦大感不解,后来他便意识到这些数集的运算与一个矩阵的运算是一模一样的,于是玻恩便与海森堡和约尔丹开展矩阵力学的建立。 首先,任何两个矩阵的乘法是不对易的:所以一个物理系统的广义坐标矩阵及其共轭动量满矩阵的乘积是不对易的:那么这个乘积会等于什么呢?其实这个乘积等于什么可从玻尔-索末菲量子条件 J = ∮ ⁡ p d q = n h {displaystyle J=oint p,dq=nh,} 加上对应原理预示出来。 对于任何周期系统,作用量有:如 p , q {displaystyle p,quad q,} 都使用傅里叶级数表示,就有:所以 1 = ∂ J ∂ J = − 2 π i ∑ τ = − ∞ ∞ τ ∂ ∂ J p τ q − τ {displaystyle 1={frac {partial J}{partial J}}=-2pi isum _{tau =-infty }^{infty }tau {frac {partial }{partial J}}p_{tau }q_{-tau },} 。在玻尔-索末菲的理论中,作用量被量子化:况且 Δ J = ( Δ n ) h = τ h , τ ≡ Δ n {displaystyle Delta J=(Delta n)h=tau h,quad tau equiv Delta n,} 。由对应原理可知,经典理论的任何一个物理量 F {displaystyle F,} 的导数 ∂ F ∂ J {displaystyle {frac {partial F}{partial J}},} ,在量子理论中可用 Δ F Δ J = Δ F τ h {displaystyle {frac {Delta F}{Delta J}}={frac {Delta F}{tau h}},} ,所以 ∂ ∂ J p τ q − τ {displaystyle {frac {partial }{partial J}}p_{tau }q_{-tau },} 可用 1 τ h Δ ( p τ q − τ ) {displaystyle {frac {1}{tau h}}Delta (p_{tau }q_{-tau }),} 替代,在新的理论中又可用 P , Q {displaystyle mathbf {P} ,mathbf {Q} ,} 表达式替代,即将此代入上述的 1 = ∂ J ∂ J = − 2 π i ∑ τ = − ∞ ∞ τ ∂ ∂ J p τ q − τ {displaystyle 1={frac {partial J}{partial J}}=-2pi isum _{tau =-infty }^{infty }tau {frac {partial }{partial J}}p_{tau }q_{-tau },} ,他们就得到关系式:这可用矩阵重新写成:他们便作以下的假定:一个物理系统的广义坐标矩阵及其共轭动量矩阵满足以下的对易关系:I {displaystyle mathbf {I} ,} 为单位矩阵。注意,千万不要以为对易关系能用玻尔-索末菲量子条件“推导”出来,更不要以为它可从经典物理推导出来,总之,对易关系是一个全新的假定,只有实验才能确认它的真实性。根据上文的对易关系,如果有一个矩阵函数(哈密顿函数) H = H ( Q , P ) {displaystyle mathbf {H} =mathbf {H} (mathbf {Q} ,mathbf {P} ),} ,我们有以下的关系:在此,采用狄拉克矢量记号。量子力学基本方程是薛定谔的波动力学就是(薛定谔绘景下)坐标空间表象下的上述方程,即海森堡的矩阵力学一般说来就是能量表象下的方程,即两者只是表象不同,自然是等价的。

相关

  • β-变形菌纲详见细菌分类表β-变形菌网(学名:Betaproteobacteria)是变形菌门中的一纲,与γ-变形菌关系最近。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
  • 瘀斑瘀斑是指直径10毫米以上的皮下出血点。当身体被硬物捶击时,皮肤下的血管会破裂,造成血液流出到相邻的皮下组织,这些积聚在皮下组织的血液会在表皮外显现成瘀斑。通常小而痛淤斑
  • 密闭空间有限空间作业是指在有限空间(英文:Confined space,也可称为局限空间、受限空间或密闭空间)进行的作业,是一种危险性较大的特种作业,在能源、冶金、建筑、机械、危险品、纺织、烟草
  • 外贸国际贸易,也称通商,是指跨越国境的货品和服务交易,一般由进口贸易和出口贸易所组成,因此也可称之为进出口贸易。国际贸易对很多国家来说是国民生产总值一个重要部分,进出口贸易可
  • 受伤受伤或创伤,是生理创伤、损害,身体受外物力量侵害,身体功能丧失、流血、断裂、骨折等。在工作时的受伤,称为工伤;在运动时受伤,称为运动创伤,学科名为运动创伤学、运动医学,总称创伤
  • 烷基磺酸酯类磺酸酯为磺酸的有机酯,都含有R-SO2O−官能团。磺酸酯具有通式:R1SO2OR2。如R2基团为甲基,R1基团为三氟甲基,则化合物为三氟甲磺酸酯。由于RSO2O−基团在SN1,SN2,E1和E2反应中是一
  • 可否证性可证伪性(英语:Falsifiability),又称可反证性、可否证性,在科学和科学哲学中用来表示由经验得来的表述所具有的一种属性,并使用严格证伪法来判别一个理论是否科学,即“这些结论必须
  • 松叶蕨纲瓶尔小草亚纲(Ophioglossidae)是链束植物四个亚纲之一。本亚纲已知有松叶蕨科和瓶尔小草科两科,分属松叶蕨目和瓶尔小草目两目。松叶蕨纲是其他蕨类植物(包括合囊蕨科与木贼科)的
  • 浪漫取向浪漫取向或恋爱取向(Romantic orientation),又称情感取向(Affectional orientation),它表明一个人更倾向于与何种生理性别或社会性别的人建立浪漫关系或产生爱情。这一术语常与性
  • 居里温度居里点(Curie point)又作居里温度(Curie temperature,Tc)或磁性转变点。是指磁性材料中自发磁化强度降到零时的温度,是铁磁性或亚铁磁性物质转变成顺磁性物质的临界点。低于居里点