首页 >
矩阵力学
✍ dations ◷ 2024-12-22 22:10:33 #矩阵力学
矢量 · 矢量空间 · 行列式 · 矩阵标量 · 矢量 · 矢量空间 · 矢量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征矢量 · 最小二乘法 · 格拉姆-施密特正交化 ·矩阵力学是量子力学其中一种的表述形式,它是由海森堡、玻恩和约尔当(P. Jordan)于1925年完成的。矩阵力学的思想出发点是针对玻尔模型中许多观点,诸如电子的轨道、频率等,都不是可以直接观察的。反之,在实验中经常接触到的是光谱线的频率、强度、偏极化,以及能级。海森堡计划创造一个理论,只是用光谱线的频率、强度、偏极化等观念。他的做法是受到爱因斯坦在相对论中对时间、空间作“操作定义”分析的影响。凡是矩阵力学,皆可建于以下的假定:h
ν
n
1
n
2
=
E
n
1
n
1
−
E
n
2
n
2
{displaystyle hnu _{{n_{1}}{n_{2}}}=E_{{n_{1}}{n_{1}}}-E_{{n_{2}}{n_{2}}},}
这个条件是由玻尔的频率条件直接得来;但对易关系是如何引进的呢?如何得知新的力学形式是用矩阵去表达的呢?
其实海森堡的思想来源是先来自周期系统的解;周期系统的解全都可用傅里叶级数去展示:在此的
q
n
=
1
2
(
a
n
−
i
b
n
)
{displaystyle q_{n}={frac {1}{2}}(a_{n}-ib_{n}),}
,
q
−
n
=
q
n
∗
{displaystyle q_{-n}=q_{n}^{*},}
。
傅里叶级数有一个特点,就是对它进行运算,例如相加、相乘或微分,都不会产生除了
n
ν
(
n
=
1
,
2
,
⋯
)
{displaystyle nnu ,(n=1,2,cdots ),}
以外的新频率系列。
但原子系统的频率是不能用傅里叶级数去表示,而是有一个叫里兹组合原则的经验关系:如果频率能表示为经验项之差(如氢原子的里德伯公式):里兹组合原则即可满足,而在这里原子系统形成一个“二维”的系统;对于频率的“二维”本性,海森堡用“二维”的广义坐标去取代傅里叶分量
q
n
e
2
π
i
n
ν
t
{displaystyle q_{n}e^{2pi innu t},}
。而为了模拟傅里叶级数,要求“二维”数集有以下关系:至于谱线
ν
n
1
n
2
{displaystyle nu _{{n_{1}}{n_{2}}},}
的幅度及偏振分别由
|
q
n
1
n
2
|
2
{displaystyle |q_{{n_{1}}{n_{2}}}|^{2},}
及
q
n
1
n
2
{displaystyle q_{{n_{1}}{n_{2}}},}
复数的相位去表示。从里兹组合原则及对应原理,可以知道这类“二维”数集的乘法规则是:以使“二维”数集的运算,都不会产生
ν
n
1
n
2
{displaystyle nu _{{n_{1}}{n_{2}}},}
以外的新频率,如海森堡只凭这些结果,就能得到谐振子的零点能是
1
2
h
ν
{displaystyle {frac {1}{2}}hnu ,}
,但计算其间要多次运用对应原理,先引入玻尔-索末菲量子条件
J
=
∮
p
d
q
=
n
h
{displaystyle J=oint p,dq=nh,}
,利用经典物理去估算量子物理的结果。接着海森堡将他的结果转寄给玻恩,玻恩对于这些“二维”数集初时亦大感不解,后来他便意识到这些数集的运算与一个矩阵的运算是一模一样的,于是玻恩便与海森堡和约尔丹开展矩阵力学的建立。
首先,任何两个矩阵的乘法是不对易的:所以一个物理系统的广义坐标矩阵及其共轭动量满矩阵的乘积是不对易的:那么这个乘积会等于什么呢?其实这个乘积等于什么可从玻尔-索末菲量子条件
J
=
∮
p
d
q
=
n
h
{displaystyle J=oint p,dq=nh,}
加上对应原理预示出来。
对于任何周期系统,作用量有:如
p
,
q
{displaystyle p,quad q,}
都使用傅里叶级数表示,就有:所以
1
=
∂
J
∂
J
=
−
2
π
i
∑
τ
=
−
∞
∞
τ
∂
∂
J
p
τ
q
−
τ
{displaystyle 1={frac {partial J}{partial J}}=-2pi isum _{tau =-infty }^{infty }tau {frac {partial }{partial J}}p_{tau }q_{-tau },}
。在玻尔-索末菲的理论中,作用量被量子化:况且
Δ
J
=
(
Δ
n
)
h
=
τ
h
,
τ
≡
Δ
n
{displaystyle Delta J=(Delta n)h=tau h,quad tau equiv Delta n,}
。由对应原理可知,经典理论的任何一个物理量
F
{displaystyle F,}
的导数
∂
F
∂
J
{displaystyle {frac {partial F}{partial J}},}
,在量子理论中可用
Δ
F
Δ
J
=
Δ
F
τ
h
{displaystyle {frac {Delta F}{Delta J}}={frac {Delta F}{tau h}},}
,所以
∂
∂
J
p
τ
q
−
τ
{displaystyle {frac {partial }{partial J}}p_{tau }q_{-tau },}
可用
1
τ
h
Δ
(
p
τ
q
−
τ
)
{displaystyle {frac {1}{tau h}}Delta (p_{tau }q_{-tau }),}
替代,在新的理论中又可用
P
,
Q
{displaystyle mathbf {P} ,mathbf {Q} ,}
表达式替代,即将此代入上述的
1
=
∂
J
∂
J
=
−
2
π
i
∑
τ
=
−
∞
∞
τ
∂
∂
J
p
τ
q
−
τ
{displaystyle 1={frac {partial J}{partial J}}=-2pi isum _{tau =-infty }^{infty }tau {frac {partial }{partial J}}p_{tau }q_{-tau },}
,他们就得到关系式:这可用矩阵重新写成:他们便作以下的假定:一个物理系统的广义坐标矩阵及其共轭动量矩阵满足以下的对易关系:I
{displaystyle mathbf {I} ,}
为单位矩阵。注意,千万不要以为对易关系能用玻尔-索末菲量子条件“推导”出来,更不要以为它可从经典物理推导出来,总之,对易关系是一个全新的假定,只有实验才能确认它的真实性。根据上文的对易关系,如果有一个矩阵函数(哈密顿函数)
H
=
H
(
Q
,
P
)
{displaystyle mathbf {H} =mathbf {H} (mathbf {Q} ,mathbf {P} ),}
,我们有以下的关系:在此,采用狄拉克矢量记号。量子力学基本方程是薛定谔的波动力学就是(薛定谔绘景下)坐标空间表象下的上述方程,即海森堡的矩阵力学一般说来就是能量表象下的方程,即两者只是表象不同,自然是等价的。
相关
- 镇静剂镇静剂,也称作镇定剂(英语:Sedatives),是一个化学上的作用物,用作减少身体某一部分的机能或是活动,镇静剂有助于缓解人们的抑郁及焦虑;它们通常被用作治疗精神紧张的病者,镇静剂有利
- 扁盘动物门黏丝盘虫(Trichoplax adhaerens)是1883年由德国生物学家Franz Eilhard Schulze (1840-1921)在奥地利Graz大学的水族馆发现的。目前在扁盘动物门中仅确认此一种,一般称丝盘虫即
- 肾皮质肾皮质(Renal cortex)是肾的外层部分,介于肾鞘膜和肾髓质的中间部分。成人的肾皮质形成连续的光华的外层区域,其间有一些突起肾柱(renal column),延伸至肾锥体(renal pyramid)。它包
- 泰坦巨蟒泰坦巨蚺属(学名:Titanoboa,意即“极大的蚺蛇”)是一个生活在古新世(约 6,000 至 5,800 万年前)的无毒、肉食性蚺类。已知的唯一种塞雷洪泰坦巨蚺(T. cerrejonensis)也是已知最大的
- 基因组计划基因组计划是科学努力,最终旨在确定生物(无论是动物,植物,真菌,细菌,古细菌,原生生物或病毒)的完整基因组序列,并注释蛋白质编码基因等 重要的基因组编码特征。生物体的基因组序列包
- 急性白磷中毒急性白磷中毒,又称急性黄磷中毒,是指人体由于摄入(吸入或口服)白磷单质(不包括磷化合物)而出现的急性中毒医学情况。急性白磷中毒的原因包括误服含白磷产品、自杀或自残、军事应用
- 维利·勃兰特维利·勃兰特(德语:Willy Brandt,亦作威利·布朗特,1913年12月18日-1992年10月8日),德国政治家,曾任联邦德国(西德)总理。1969年西德联邦大选,勃兰特领导的社民党成为第一大党,结束基督
- Unsymmetrical dimethylhydrazine偏二甲肼,或称1,1-二甲基联氨、偏二甲基联胺、偏二甲基肼,分子式(CH3)2NNH2,英文缩写UDMH(Unsymmetrical dimethylhydrazine),无色易燃液体。二甲胺与亚硝酸作用后经还原而得。二
- 1979年旧金山骚乱1979年旧金山骚乱 是于1979年5月21日发生在美国旧金山的一场骚乱。事件是缘于一件凶杀案,旧金山市长莫斯孔尼与同性恋社群中深受爱戴的已出柜政治人物,旧金山市议员哈维·米尔
- 卡尔·路德维格·布卢姆卡尔·路德维希·冯·布卢姆(德语:Karl Ludwig von Blume,荷兰语:Charles Ludwig de Blume,1796年6月9日-1862年2月3日)为德国与荷兰植物学家。他出生于德国的不伦瑞克,毕业于莱顿大