首页 >
矩阵力学
✍ dations ◷ 2025-04-03 17:13:04 #矩阵力学
矢量 · 矢量空间 · 行列式 · 矩阵标量 · 矢量 · 矢量空间 · 矢量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征矢量 · 最小二乘法 · 格拉姆-施密特正交化 ·矩阵力学是量子力学其中一种的表述形式,它是由海森堡、玻恩和约尔当(P. Jordan)于1925年完成的。矩阵力学的思想出发点是针对玻尔模型中许多观点,诸如电子的轨道、频率等,都不是可以直接观察的。反之,在实验中经常接触到的是光谱线的频率、强度、偏极化,以及能级。海森堡计划创造一个理论,只是用光谱线的频率、强度、偏极化等观念。他的做法是受到爱因斯坦在相对论中对时间、空间作“操作定义”分析的影响。凡是矩阵力学,皆可建于以下的假定:h
ν
n
1
n
2
=
E
n
1
n
1
−
E
n
2
n
2
{displaystyle hnu _{{n_{1}}{n_{2}}}=E_{{n_{1}}{n_{1}}}-E_{{n_{2}}{n_{2}}},}
这个条件是由玻尔的频率条件直接得来;但对易关系是如何引进的呢?如何得知新的力学形式是用矩阵去表达的呢?
其实海森堡的思想来源是先来自周期系统的解;周期系统的解全都可用傅里叶级数去展示:在此的
q
n
=
1
2
(
a
n
−
i
b
n
)
{displaystyle q_{n}={frac {1}{2}}(a_{n}-ib_{n}),}
,
q
−
n
=
q
n
∗
{displaystyle q_{-n}=q_{n}^{*},}
。
傅里叶级数有一个特点,就是对它进行运算,例如相加、相乘或微分,都不会产生除了
n
ν
(
n
=
1
,
2
,
⋯
)
{displaystyle nnu ,(n=1,2,cdots ),}
以外的新频率系列。
但原子系统的频率是不能用傅里叶级数去表示,而是有一个叫里兹组合原则的经验关系:如果频率能表示为经验项之差(如氢原子的里德伯公式):里兹组合原则即可满足,而在这里原子系统形成一个“二维”的系统;对于频率的“二维”本性,海森堡用“二维”的广义坐标去取代傅里叶分量
q
n
e
2
π
i
n
ν
t
{displaystyle q_{n}e^{2pi innu t},}
。而为了模拟傅里叶级数,要求“二维”数集有以下关系:至于谱线
ν
n
1
n
2
{displaystyle nu _{{n_{1}}{n_{2}}},}
的幅度及偏振分别由
|
q
n
1
n
2
|
2
{displaystyle |q_{{n_{1}}{n_{2}}}|^{2},}
及
q
n
1
n
2
{displaystyle q_{{n_{1}}{n_{2}}},}
复数的相位去表示。从里兹组合原则及对应原理,可以知道这类“二维”数集的乘法规则是:以使“二维”数集的运算,都不会产生
ν
n
1
n
2
{displaystyle nu _{{n_{1}}{n_{2}}},}
以外的新频率,如海森堡只凭这些结果,就能得到谐振子的零点能是
1
2
h
ν
{displaystyle {frac {1}{2}}hnu ,}
,但计算其间要多次运用对应原理,先引入玻尔-索末菲量子条件
J
=
∮
p
d
q
=
n
h
{displaystyle J=oint p,dq=nh,}
,利用经典物理去估算量子物理的结果。接着海森堡将他的结果转寄给玻恩,玻恩对于这些“二维”数集初时亦大感不解,后来他便意识到这些数集的运算与一个矩阵的运算是一模一样的,于是玻恩便与海森堡和约尔丹开展矩阵力学的建立。
首先,任何两个矩阵的乘法是不对易的:所以一个物理系统的广义坐标矩阵及其共轭动量满矩阵的乘积是不对易的:那么这个乘积会等于什么呢?其实这个乘积等于什么可从玻尔-索末菲量子条件
J
=
∮
p
d
q
=
n
h
{displaystyle J=oint p,dq=nh,}
加上对应原理预示出来。
对于任何周期系统,作用量有:如
p
,
q
{displaystyle p,quad q,}
都使用傅里叶级数表示,就有:所以
1
=
∂
J
∂
J
=
−
2
π
i
∑
τ
=
−
∞
∞
τ
∂
∂
J
p
τ
q
−
τ
{displaystyle 1={frac {partial J}{partial J}}=-2pi isum _{tau =-infty }^{infty }tau {frac {partial }{partial J}}p_{tau }q_{-tau },}
。在玻尔-索末菲的理论中,作用量被量子化:况且
Δ
J
=
(
Δ
n
)
h
=
τ
h
,
τ
≡
Δ
n
{displaystyle Delta J=(Delta n)h=tau h,quad tau equiv Delta n,}
。由对应原理可知,经典理论的任何一个物理量
F
{displaystyle F,}
的导数
∂
F
∂
J
{displaystyle {frac {partial F}{partial J}},}
,在量子理论中可用
Δ
F
Δ
J
=
Δ
F
τ
h
{displaystyle {frac {Delta F}{Delta J}}={frac {Delta F}{tau h}},}
,所以
∂
∂
J
p
τ
q
−
τ
{displaystyle {frac {partial }{partial J}}p_{tau }q_{-tau },}
可用
1
τ
h
Δ
(
p
τ
q
−
τ
)
{displaystyle {frac {1}{tau h}}Delta (p_{tau }q_{-tau }),}
替代,在新的理论中又可用
P
,
Q
{displaystyle mathbf {P} ,mathbf {Q} ,}
表达式替代,即将此代入上述的
1
=
∂
J
∂
J
=
−
2
π
i
∑
τ
=
−
∞
∞
τ
∂
∂
J
p
τ
q
−
τ
{displaystyle 1={frac {partial J}{partial J}}=-2pi isum _{tau =-infty }^{infty }tau {frac {partial }{partial J}}p_{tau }q_{-tau },}
,他们就得到关系式:这可用矩阵重新写成:他们便作以下的假定:一个物理系统的广义坐标矩阵及其共轭动量矩阵满足以下的对易关系:I
{displaystyle mathbf {I} ,}
为单位矩阵。注意,千万不要以为对易关系能用玻尔-索末菲量子条件“推导”出来,更不要以为它可从经典物理推导出来,总之,对易关系是一个全新的假定,只有实验才能确认它的真实性。根据上文的对易关系,如果有一个矩阵函数(哈密顿函数)
H
=
H
(
Q
,
P
)
{displaystyle mathbf {H} =mathbf {H} (mathbf {Q} ,mathbf {P} ),}
,我们有以下的关系:在此,采用狄拉克矢量记号。量子力学基本方程是薛定谔的波动力学就是(薛定谔绘景下)坐标空间表象下的上述方程,即海森堡的矩阵力学一般说来就是能量表象下的方程,即两者只是表象不同,自然是等价的。
相关
- B细胞B细胞(B淋巴球)有时称之为“朝囊定位细胞”(bursa oriented cells),这是因为它们首次在鸡的腔上囊(Bursa of Fabricius)被提及的关系。在肠道的派亚氏腺体(Peyer's glands)中的淋巴组
- 选择压力演化压力,或选择压力,可以被认为是外界施与一个生物演化过程的压力,从而改变该过程的前进方向。所谓达尔文的自然选择,或者物竞天择,适者生存,即是说,自然界施与生物体选择压力从而
- 重力重力(英语:gravitation/gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在
- 渡渡鸟渡渡鸟(学名:Raphus cucullatus)又称毛里求斯愚鸠、愚鸠、孤鸽,是已灭绝的渡渡鸟属的唯一物种,属鸽形目鸠鸽科,仅产于南印度洋马达加斯加岛东侧的毛里求斯岛上,是一种不会飞的鸟。
- 瓦雷泽瓦雷泽(意大利语:Varese)位于意大利米兰城以北55公里,是伦巴第政区中的一座城市。瓦雷泽是瓦雷泽省的省会,从1998年开始也是一座大学城。2009年12月31日城内有81,788名居民。城市
- 中国语言饮食 - 服饰 - 建筑 - 文物 - 节日 - 教育 科学 - 五术(医学 - 术数) - 武术中国语言,是指中国范围内各民族所使用的语言。由于长期受到汉语的影响,中国的少数民族现在大部分都
- 姚建年姚建年(1953年11月-),男,福建晋江人,中华人民共和国物理化学家。中国科学院化学研究所研究员,中国科学院化学部院士。生于福建晋江。1982年毕业于福建师范大学化学系,1990年获日本东
- 几内亚湾流畿内亚洋流(Guinea Current)为一个缓慢温暖的洋流,其水流沿着西非畿内亚地区(Guinea (region))岸边向东流。
- NSA美国国家安全局(英语:National Security Agency,缩写:NSA)是美国政府机构中最大的情报部门,专门负责收集和分析外国及本国通讯资料,隶属于美国国防部,是根据美国总统的命令成立的部
- 王奇王奇(1963年5月-),现任清华大学历史系副教授,北京大学国际关系学士、圣彼得堡国立大学历史学博士。因在《中俄国界东段学术史研究:中国、俄国、西方学者视野中的中俄国界东段问题