首页 >
弗里德曼方程
✍ dations ◷ 2025-04-02 10:03:54 #弗里德曼方程
弗里德曼方程(英文:Friedmann equations)是广义相对论框架下描述空间上均一且各向同性的膨胀宇宙模型(英语:Metric expansion of space)的一组方程。它们最早由亚历山大·弗里德曼在1922年得出,他通过在弗里德曼-勒梅特-罗伯逊-沃尔克度规下对具有给定质量密度
ρ
{displaystyle rho ,}
和压力
p
{displaystyle p,}
的流体的能量-动量张量应用爱因斯坦引力场方程而得到。而具有负的空间曲率的方程则由弗里德曼在1924年得到。弗里德曼方程所基于的假设是宇宙在空间上是均一且各向同性的;从今天的经验来看,这个假设在大于一亿秒差距的尺度上是合理的。这个假设要求宇宙的度规具有如下形式:其中宇宙标度因子
a
(
t
)
{displaystyle a(t),}
只与时间有关,因而三维空间度规
d
s
3
2
{displaystyle ds_{3}^{2},}
必须是下面三种形式之一:在下面的讨论中,这三种情形各自对应着一个参数k的值,分别为0,1,-1。而
a
(
t
)
{displaystyle a(t),}
被称作宇宙标度因子,它能够通过爱因斯坦场方程和宇宙间物质的能量和应力联系。描述一个均一且各向同性的膨胀宇宙模型需要两个独立的弗里德曼方程,它们是这一方程来自爱因斯坦场方程的00分量;以及这一方程来自爱因斯坦场方程的迹。其中
G
,
Λ
,
c
{displaystyle G,Lambda ,c,}
是普适性常数,而在每一个特定解中
k
{displaystyle k,}
也是常数;
a
,
H
,
ρ
,
p
{displaystyle a,H,rho ,p,}
是随时间变化的函数。这里
H
≡
a
˙
a
{displaystyle Hequiv {frac {dot {a}}{a}}}
是哈勃参数,表征着宇宙膨胀的速率;
Λ
{displaystyle Lambda }
是宇宙学常数;
G
{displaystyle G}
是牛顿的万有引力常数;
c
{displaystyle c}
是真空中的光速。
k
a
2
{displaystyle k over a^{2}}
是宇宙任意“时间切片”的空间曲率,它在这里等于里奇标量
R
{displaystyle R,}
的六分之一,这是由于在弗里德曼模型中
R
=
6
a
2
(
a
¨
a
+
a
˙
2
+
k
c
2
)
{displaystyle R={frac {6}{a^{2}}}({ddot {a}}a+{dot {a}}^{2}+kc^{2})}
。通常我们在选取参数
a
{displaystyle a,}
或
k
{displaystyle k,}
进行不同情形的讨论时它们可以代表两者不同的含义,但最终所代表的物理模型本质是一样的。通过第一个方程,第二个方程的形式可以写为这个形式消除了宇宙常数项并体现了质能守恒定律。有时方程可以通过如下重新定义来简化:ρ
→
ρ
+
Λ
c
2
8
π
G
{displaystyle rho rightarrow rho +{frac {Lambda c^{2}}{8pi G}}}p
→
p
−
Λ
c
4
8
π
G
{displaystyle prightarrow p-{frac {Lambda c^{4}}{8pi G}}}从而得到简化后第二个方程在这个变换下具有不变性。哈勃参数
H
{displaystyle H,}
在其他参数随时间变化(特别是质量密度、真空能量或空间曲率)时也是随时间变化的;而在当今对哈勃参数的测量表明它在哈勃定律中是一个常数。如果将弗里德曼方程应用于一个流体的状态方程,所得到的宇宙的时空几何是流体密度的函数。有些宇宙学家将第二个方程称作弗里德曼加速方程,而只称第一个方程为弗里德曼方程。宇宙的密度参数
Ω
{displaystyle Omega ,}
,定义为宇宙的实际(或观测)密度与弗里德曼宇宙的临界密度
Ω
c
{displaystyle Omega _{c},}
的比值。得到临界密度需要假设宇宙学常数为零(基本的弗里德曼宇宙正包含这个假设)并使归一化的空间曲率
k
{displaystyle k,}
为零,从而根据第一个方程得到密度参数因此为这个参数本来是用来判断宇宙的空间几何形状的一种方法,在临界密度
Ω
c
{displaystyle Omega _{c},}
时宇宙的形状是平直的。在真空能量密度为零的假设下,如果密度参数大于一,宇宙在空间上是闭合的,宇宙会最终停止膨胀并开始坍缩;如果密度参数小于一,宇宙在空间上是开放的,宇宙会一直保持膨胀下去。不过,如果将空间曲率和真空能量都一起考虑到密度参数中,也有可能出现密度参数正好等于一的情况,验证这种情况就需要对宇宙中多个参数进行测量。根据宇宙的ΛCDM模型,密度参数所包含的重要参数还有重子、冷暗物质和暗能量。根据威尔金森微波各向异性探测器(WMAP)对宇宙空间几何的探测表明,宇宙是接近平直的,即空间曲率
k
{displaystyle k,}
为零。第一个弗里德曼方程经常用密度参数来表示为其中
Ω
R
{displaystyle Omega _{R},}
是宇宙现在的辐射密度(即
a
=
1
{displaystyle a=1,}
时的密度),
Ω
M
{displaystyle Omega _{M},}
是宇宙现在的物质密度(包括重子和暗物质),
Ω
k
=
1
−
Ω
{displaystyle Omega _{k}=1-Omega ,}
是宇宙现在的空间曲率密度,而
Ω
Λ
{displaystyle Omega _{Lambda },}
是宇宙现在的宇宙常数或真空能量密度。在理想流体的情形下,弗里德曼方程很容易求解;此时的状态方程是其中
p
{displaystyle p,}
是压力,
ρ
{displaystyle rho ,}
是流体在自身参考系下的质量密度,
w
{displaystyle w,}
是一个常数。此时的宇宙标度因子的解为其中
a
0
{displaystyle a_{0},}
是能够根据初始条件得到的积分常数。而
w
{displaystyle w,}
在取不同的值时对应着不同的解,这一族解对宇宙学意义非常重要。例如在
w
=
0
{displaystyle w=0,}
时对应着物质占主导地位的宇宙,意味着宇宙中物质的密度远超过辐射的密度,从一般解中可以看到此时的解为另一种情形是辐射密度远大于物质密度,此时对应
w
=
1
/
3
{displaystyle w=1/3,}
,即
相关
- 喹诺酮喹诺酮(英语:quinolone)是一类人工合成的含4-喹诺酮基本结构,对细菌DNA螺旋酶具有选择性抑制的抗菌剂。1962年最早的喹诺酮类药物萘啶酸首先用于临床,由于其抗菌谱窄、口服吸收差
- 临时参议长议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
- 守恒定律在物理学里,假若孤立物理系统的某种可观测性质遵守守恒定律(law of conservation),则随着系统的演进,这种性质不会改变。诺特定理是关于守恒定律的重要理论。诺特定理表明,每一种
- 斯氏疟蚊斯氏按蚊(学名:Anopheles stephensi)是疟蚊属的一种蚊子,是印度疟疾的主要传播者,也见于中国和印度之外的一些东南亚、南亚国家,2014年已入侵至吉布提。其下有两个亚种,即主要发现
- 令 (纸张单位)令是纸张的单位,又称领。一令就是五百张纸。短令是480张纸,长令(perfect ream)是516张纸。短令是20个short quires,一令是20个quires,一个长令(perfect ream 或 printer's ream)是21
- 线性炔碳直链乙炔碳(Linear Acetylenic Carbon),也称卡拜(Carbyne)、线型碳(Linear carbon),碳的一种同素异形体,具有-(C ≡ {\displaystyle \equiv
- 悦般悦般是北魏时一个西域国家,最初在龟兹以北游牧,其后活动于乌孙西北(大约在今日的七河地区),最早出现在《魏书》,记载为“匈奴北单于之部落”,即窦宪打败又西走的无名号北单于,悦般为
- 数理金融学金融数学(英语:Financial Mathematics)又称计量金融学(英语:Quantitative Finance)、数学金融学(英语:Mathematical Finance),是专为金融市场而设的应用数学。其本义上与金融经济学的
- 2,3-丁二醇2,3-丁二醇(英语:2,3-Butanediol)是化学式为(CH3CHOH)2的二元醇,带有两个手性碳原子,其中的(2R,3S)-2,3-丁二醇为内消旋化合物,因此总共有三种立体异构体。三种2,3-丁二醇在物理性
- 导尿医学上,导尿指对于无法自主排尿的患者,由医护人员将导尿管经由尿道插入到膀胱,引流出尿液。导尿分为导管留置性导尿及间歇性导尿二种。前者导尿管一直留置在病人体内,并外接储尿