弗里德曼方程

✍ dations ◷ 2025-06-28 00:33:10 #弗里德曼方程
弗里德曼方程(英文:Friedmann equations)是广义相对论框架下描述空间上均一且各向同性的膨胀宇宙模型(英语:Metric expansion of space)的一组方程。它们最早由亚历山大·弗里德曼在1922年得出,他通过在弗里德曼-勒梅特-罗伯逊-沃尔克度规下对具有给定质量密度 ρ {displaystyle rho ,} 和压力 p {displaystyle p,} 的流体的能量-动量张量应用爱因斯坦引力场方程而得到。而具有负的空间曲率的方程则由弗里德曼在1924年得到。弗里德曼方程所基于的假设是宇宙在空间上是均一且各向同性的;从今天的经验来看,这个假设在大于一亿秒差距的尺度上是合理的。这个假设要求宇宙的度规具有如下形式:其中宇宙标度因子 a ( t ) {displaystyle a(t),} 只与时间有关,因而三维空间度规 d s 3 2 {displaystyle ds_{3}^{2},} 必须是下面三种形式之一:在下面的讨论中,这三种情形各自对应着一个参数k的值,分别为0,1,-1。而 a ( t ) {displaystyle a(t),} 被称作宇宙标度因子,它能够通过爱因斯坦场方程和宇宙间物质的能量和应力联系。描述一个均一且各向同性的膨胀宇宙模型需要两个独立的弗里德曼方程,它们是这一方程来自爱因斯坦场方程的00分量;以及这一方程来自爱因斯坦场方程的迹。其中 G , Λ , c {displaystyle G,Lambda ,c,} 是普适性常数,而在每一个特定解中 k {displaystyle k,} 也是常数; a , H , ρ , p {displaystyle a,H,rho ,p,} 是随时间变化的函数。这里 H ≡ a ˙ a {displaystyle Hequiv {frac {dot {a}}{a}}} 是哈勃参数,表征着宇宙膨胀的速率; Λ {displaystyle Lambda } 是宇宙学常数; G {displaystyle G} 是牛顿的万有引力常数; c {displaystyle c} 是真空中的光速。 k a 2 {displaystyle k over a^{2}} 是宇宙任意“时间切片”的空间曲率,它在这里等于里奇标量 R {displaystyle R,} 的六分之一,这是由于在弗里德曼模型中 R = 6 a 2 ( a ¨ a + a ˙ 2 + k c 2 ) {displaystyle R={frac {6}{a^{2}}}({ddot {a}}a+{dot {a}}^{2}+kc^{2})} 。通常我们在选取参数 a {displaystyle a,} 或 k {displaystyle k,} 进行不同情形的讨论时它们可以代表两者不同的含义,但最终所代表的物理模型本质是一样的。通过第一个方程,第二个方程的形式可以写为这个形式消除了宇宙常数项并体现了质能守恒定律。有时方程可以通过如下重新定义来简化:ρ → ρ + Λ c 2 8 π G {displaystyle rho rightarrow rho +{frac {Lambda c^{2}}{8pi G}}}p → p − Λ c 4 8 π G {displaystyle prightarrow p-{frac {Lambda c^{4}}{8pi G}}}从而得到简化后第二个方程在这个变换下具有不变性。哈勃参数 H {displaystyle H,} 在其他参数随时间变化(特别是质量密度、真空能量或空间曲率)时也是随时间变化的;而在当今对哈勃参数的测量表明它在哈勃定律中是一个常数。如果将弗里德曼方程应用于一个流体的状态方程,所得到的宇宙的时空几何是流体密度的函数。有些宇宙学家将第二个方程称作弗里德曼加速方程,而只称第一个方程为弗里德曼方程。宇宙的密度参数 Ω {displaystyle Omega ,} ,定义为宇宙的实际(或观测)密度与弗里德曼宇宙的临界密度 Ω c {displaystyle Omega _{c},} 的比值。得到临界密度需要假设宇宙学常数为零(基本的弗里德曼宇宙正包含这个假设)并使归一化的空间曲率 k {displaystyle k,} 为零,从而根据第一个方程得到密度参数因此为这个参数本来是用来判断宇宙的空间几何形状的一种方法,在临界密度 Ω c {displaystyle Omega _{c},} 时宇宙的形状是平直的。在真空能量密度为零的假设下,如果密度参数大于一,宇宙在空间上是闭合的,宇宙会最终停止膨胀并开始坍缩;如果密度参数小于一,宇宙在空间上是开放的,宇宙会一直保持膨胀下去。不过,如果将空间曲率和真空能量都一起考虑到密度参数中,也有可能出现密度参数正好等于一的情况,验证这种情况就需要对宇宙中多个参数进行测量。根据宇宙的ΛCDM模型,密度参数所包含的重要参数还有重子、冷暗物质和暗能量。根据威尔金森微波各向异性探测器(WMAP)对宇宙空间几何的探测表明,宇宙是接近平直的,即空间曲率 k {displaystyle k,} 为零。第一个弗里德曼方程经常用密度参数来表示为其中 Ω R {displaystyle Omega _{R},} 是宇宙现在的辐射密度(即 a = 1 {displaystyle a=1,} 时的密度), Ω M {displaystyle Omega _{M},} 是宇宙现在的物质密度(包括重子和暗物质), Ω k = 1 − Ω {displaystyle Omega _{k}=1-Omega ,} 是宇宙现在的空间曲率密度,而 Ω Λ {displaystyle Omega _{Lambda },} 是宇宙现在的宇宙常数或真空能量密度。在理想流体的情形下,弗里德曼方程很容易求解;此时的状态方程是其中 p {displaystyle p,} 是压力, ρ {displaystyle rho ,} 是流体在自身参考系下的质量密度, w {displaystyle w,} 是一个常数。此时的宇宙标度因子的解为其中 a 0 {displaystyle a_{0},} 是能够根据初始条件得到的积分常数。而 w {displaystyle w,} 在取不同的值时对应着不同的解,这一族解对宇宙学意义非常重要。例如在 w = 0 {displaystyle w=0,} 时对应着物质占主导地位的宇宙,意味着宇宙中物质的密度远超过辐射的密度,从一般解中可以看到此时的解为另一种情形是辐射密度远大于物质密度,此时对应 w = 1 / 3 {displaystyle w=1/3,} ,即

相关

  • 灰黄霉素灰黄霉素(英语:Griseofulvin),是一种抗真菌的口服药物。在动物和人类中,它是用来治疗真菌感染的皮肤(癣的俗称)和指甲。它是在1939年由灰黄青霉被分离的部分菌株所培养而成。灰黄霉
  • 山金车山金车(学名:Arnica Montana)是一种源于中欧以及西伯利亚高原地区的的菊科植物,在缓解肌肉和关节疼痛及炎症方面具有悠久历史。近年全球有多项针对山金车疗效的基础医学及临床研
  • 威利斯·兰姆威利斯·兰姆(英语:Willis Lamb, Junior,1913年7月12日-2008年5月15日),美国物理学家,生于洛杉矶,1955年获诺贝尔物理学奖。威利斯·兰姆出生于美国加利福尼亚州洛杉矶,并在洛杉矶高
  • 萨伏依萨伏依公国(法语:Duché de Savoie、意大利语:Ducato di Savoia)是1416年至1713年间曾经存在于西欧的独立公国,由萨伏依家族统治,领土包括今日意大利西北部和法国的东南部的部分地
  • 网状共价键共价键(英语:covalent bond),是化学键的一种。两个或多个非金属原子共同使用它们的外层电子(砷化镓为例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做
  • 隋森芳隋森芳(1945年2月-),中国生物物理学家。清华大学生物科学与技术系教授。生于黑龙江哈尔滨,原籍山东黄县。1970年毕业于清华大学精密仪器系,1981年获该校工程物理系硕士学位,1988年
  • 阑尾切除手术阑尾切除术(appendectomy),是切除阑尾的手术。因阑尾位在盲肠附近,以往知道阑尾的人较少,因此也会误称割盲肠。一般病人会进行阑尾切除术的原因是因急性阑尾炎而相当疼痛,因此阑尾
  • 圆山大饭店圆山大饭店是位于中华民国台北市中山区剑潭山的地标性质中国风饭店,成立于第二次世界大战后,早年为台湾首屈一指的大型国际性饭店。目前所见的宫殿风格建筑于1973年落成,是台北
  • 计算机硬件硬件是电脑的物理设备。系统软件存储在硬件内,包含固件(如BIOS)以及操作系统,系统软件使应用软件可以提供用户所需的功能。操作系统通常借由总线与设备沟通,这就需要驱动程序。计
  • 食用菌食用蕈,或称食用菌或食用菇、食菇,是可以食用的大型真菌子实体(不包括酵母菌、青霉菌等微生物)。决定真菌是否可以食用的因素包括毒性、味道、硬度、和气味。有些有毒的蕈类经过