首页 >
弗里德曼方程
✍ dations ◷ 2025-04-04 11:04:07 #弗里德曼方程
弗里德曼方程(英文:Friedmann equations)是广义相对论框架下描述空间上均一且各向同性的膨胀宇宙模型(英语:Metric expansion of space)的一组方程。它们最早由亚历山大·弗里德曼在1922年得出,他通过在弗里德曼-勒梅特-罗伯逊-沃尔克度规下对具有给定质量密度
ρ
{displaystyle rho ,}
和压力
p
{displaystyle p,}
的流体的能量-动量张量应用爱因斯坦引力场方程而得到。而具有负的空间曲率的方程则由弗里德曼在1924年得到。弗里德曼方程所基于的假设是宇宙在空间上是均一且各向同性的;从今天的经验来看,这个假设在大于一亿秒差距的尺度上是合理的。这个假设要求宇宙的度规具有如下形式:其中宇宙标度因子
a
(
t
)
{displaystyle a(t),}
只与时间有关,因而三维空间度规
d
s
3
2
{displaystyle ds_{3}^{2},}
必须是下面三种形式之一:在下面的讨论中,这三种情形各自对应着一个参数k的值,分别为0,1,-1。而
a
(
t
)
{displaystyle a(t),}
被称作宇宙标度因子,它能够通过爱因斯坦场方程和宇宙间物质的能量和应力联系。描述一个均一且各向同性的膨胀宇宙模型需要两个独立的弗里德曼方程,它们是这一方程来自爱因斯坦场方程的00分量;以及这一方程来自爱因斯坦场方程的迹。其中
G
,
Λ
,
c
{displaystyle G,Lambda ,c,}
是普适性常数,而在每一个特定解中
k
{displaystyle k,}
也是常数;
a
,
H
,
ρ
,
p
{displaystyle a,H,rho ,p,}
是随时间变化的函数。这里
H
≡
a
˙
a
{displaystyle Hequiv {frac {dot {a}}{a}}}
是哈勃参数,表征着宇宙膨胀的速率;
Λ
{displaystyle Lambda }
是宇宙学常数;
G
{displaystyle G}
是牛顿的万有引力常数;
c
{displaystyle c}
是真空中的光速。
k
a
2
{displaystyle k over a^{2}}
是宇宙任意“时间切片”的空间曲率,它在这里等于里奇标量
R
{displaystyle R,}
的六分之一,这是由于在弗里德曼模型中
R
=
6
a
2
(
a
¨
a
+
a
˙
2
+
k
c
2
)
{displaystyle R={frac {6}{a^{2}}}({ddot {a}}a+{dot {a}}^{2}+kc^{2})}
。通常我们在选取参数
a
{displaystyle a,}
或
k
{displaystyle k,}
进行不同情形的讨论时它们可以代表两者不同的含义,但最终所代表的物理模型本质是一样的。通过第一个方程,第二个方程的形式可以写为这个形式消除了宇宙常数项并体现了质能守恒定律。有时方程可以通过如下重新定义来简化:ρ
→
ρ
+
Λ
c
2
8
π
G
{displaystyle rho rightarrow rho +{frac {Lambda c^{2}}{8pi G}}}p
→
p
−
Λ
c
4
8
π
G
{displaystyle prightarrow p-{frac {Lambda c^{4}}{8pi G}}}从而得到简化后第二个方程在这个变换下具有不变性。哈勃参数
H
{displaystyle H,}
在其他参数随时间变化(特别是质量密度、真空能量或空间曲率)时也是随时间变化的;而在当今对哈勃参数的测量表明它在哈勃定律中是一个常数。如果将弗里德曼方程应用于一个流体的状态方程,所得到的宇宙的时空几何是流体密度的函数。有些宇宙学家将第二个方程称作弗里德曼加速方程,而只称第一个方程为弗里德曼方程。宇宙的密度参数
Ω
{displaystyle Omega ,}
,定义为宇宙的实际(或观测)密度与弗里德曼宇宙的临界密度
Ω
c
{displaystyle Omega _{c},}
的比值。得到临界密度需要假设宇宙学常数为零(基本的弗里德曼宇宙正包含这个假设)并使归一化的空间曲率
k
{displaystyle k,}
为零,从而根据第一个方程得到密度参数因此为这个参数本来是用来判断宇宙的空间几何形状的一种方法,在临界密度
Ω
c
{displaystyle Omega _{c},}
时宇宙的形状是平直的。在真空能量密度为零的假设下,如果密度参数大于一,宇宙在空间上是闭合的,宇宙会最终停止膨胀并开始坍缩;如果密度参数小于一,宇宙在空间上是开放的,宇宙会一直保持膨胀下去。不过,如果将空间曲率和真空能量都一起考虑到密度参数中,也有可能出现密度参数正好等于一的情况,验证这种情况就需要对宇宙中多个参数进行测量。根据宇宙的ΛCDM模型,密度参数所包含的重要参数还有重子、冷暗物质和暗能量。根据威尔金森微波各向异性探测器(WMAP)对宇宙空间几何的探测表明,宇宙是接近平直的,即空间曲率
k
{displaystyle k,}
为零。第一个弗里德曼方程经常用密度参数来表示为其中
Ω
R
{displaystyle Omega _{R},}
是宇宙现在的辐射密度(即
a
=
1
{displaystyle a=1,}
时的密度),
Ω
M
{displaystyle Omega _{M},}
是宇宙现在的物质密度(包括重子和暗物质),
Ω
k
=
1
−
Ω
{displaystyle Omega _{k}=1-Omega ,}
是宇宙现在的空间曲率密度,而
Ω
Λ
{displaystyle Omega _{Lambda },}
是宇宙现在的宇宙常数或真空能量密度。在理想流体的情形下,弗里德曼方程很容易求解;此时的状态方程是其中
p
{displaystyle p,}
是压力,
ρ
{displaystyle rho ,}
是流体在自身参考系下的质量密度,
w
{displaystyle w,}
是一个常数。此时的宇宙标度因子的解为其中
a
0
{displaystyle a_{0},}
是能够根据初始条件得到的积分常数。而
w
{displaystyle w,}
在取不同的值时对应着不同的解,这一族解对宇宙学意义非常重要。例如在
w
=
0
{displaystyle w=0,}
时对应着物质占主导地位的宇宙,意味着宇宙中物质的密度远超过辐射的密度,从一般解中可以看到此时的解为另一种情形是辐射密度远大于物质密度,此时对应
w
=
1
/
3
{displaystyle w=1/3,}
,即
相关
- 同化同化作用,又称为合成代谢,是指生物体利用能量将小分子合成为大分子的一系列代谢途径。这些反应需要能量,也被称为吸能过程(endergonic process)。将代谢过程分类的一种方式,无论是
- 鼻音 (辅音)鼻音是按发音方法分类的一类辅音。发音时,口腔中的气流通路被阻塞,软颚下垂,气流通过鼻腔,与气流从口腔流出的口腔辅音相对。 (少数的挤喉音可能同时具有口腔辅音与鼻音的性质。)
- 贯叶连翘贯叶连翘(学名:Hypericum perforatum), 又名贯叶金丝桃、圣约翰草(St John's wort),金丝桃科金丝桃属植物,是欧美的常用草药,主要用于妇女调经,亦有宁神、平衡情绪的作用,临床上发现对
- 副教授教授,是一种高等教育体系中的职称。在中国汉、唐的大学中即设有此官职;在现代汉语、日语、及韩语的语境中,多作为英语“Professor”一词的同义语使用,指在现代高等教育机构(例如
- 具在伊具在伊(韩语:구재이,1986年2月28日-),本名具恩爱(韩语:구은애),韩国女演员。
- 陈润生陈润生(1941年6月-),中国生物信息学家。中国科学院生物物理研究所研究员。1941年生于天津,原籍天津。1964年毕业于中国科学技术大学生物物理系。2007年当选为中国科学院院士。
- 北欧国家北半球(深灰) —北欧五国是位于北欧的丹麦、芬兰、冰岛、挪威和瑞典及其附属领土如属于丹麦的法罗群岛、格陵兰,属于芬兰的奥兰群岛和属于挪威的斯瓦尔巴群岛的统称。而由于
- bNMDAR/bN-甲基-D-天门冬胺酸受体(英语:N-methyl-D-aspartate receptor,简称NMDA受体或NMDAR)为麸胺酸盐受体,是一个主要的分子装置,控制突触的可塑性与记忆功能。NMDA受体是一种离子型麸
- 锌激活离子通道· integral to membrane锌激活离子通道(英语:Zinc-activated ion channel,ZAC),是一种由人类基因ZACN 编码的蛋白质。ZAC属于阳离子渗透型配体门控离子通道中的半胱氨酸环超家族
- 高雄85大楼高雄85大楼(85 Sky Tower),前称东帝士85国际广场、东帝士建台大楼、TC Tower,位于高雄市苓雅区,紧邻著高雄港和新光码头,是85层楼高的摩天大楼,其增加天线为378米,为高雄第一高楼,亦