多体微扰理论

✍ dations ◷ 2025-11-25 01:35:01 #量子化学,微扰理论

多体微扰理论是一种基于分子轨域理论的高级量子化学计算方法。这种方法以Hartree-Fock方程的自洽场解为基础,应用微扰理论,获得考虑了相关能的多电子体系近似解,其计算精度与组态相互作用方法的DCI接近,但计算量远小于DCI,是应用比较广泛的高级量子化学计算方法。

多体微扰理论是由量子化学家Møller和Plesset在1934年提出的,所以这一方法也经常以二人的名字所写MP表示,MPn表示的是多体微扰n级近似。

多体微扰理论是以Hartree-Fock方程为基础的,应用微扰法处理的计算方法。微扰法要求将复杂体系的哈密顿算子分解为可精确求解项和微扰项两部分,在多体微扰理论中,引入Hartree-Fock哈密顿算子的概念:

H 0 = i N f i {\displaystyle H_{0}=\sum _{i}^{N}f_{i}}

可以证明,由Hartree-Fock方程解得的单电子分子轨道波函数所构成的斯莱特行列式波函数是 H 0 {\displaystyle H_{0}} 的本征函数,构成斯莱特行列式的各分子轨道轨道能的代数和是 H 0 {\displaystyle H_{0}} 的本征值:

H 0 | Ψ 0 >= i N ϵ i | Ψ 0 > {\displaystyle H_{0}|\Psi _{0}>=\sum _{i}^{N}\epsilon _{i}|\Psi _{0}>}

将多电子体系哈密顿算子分解为Hartree-Fock哈密顿算子和微扰项的代数和:

H e l e = H 0 + V {\displaystyle H_{ele}=H_{0}+V}

在这个假设下,多电子体系电子哈密顿算子被分解为可精确求解的Hartree-Fock哈密顿算子和微扰算子,应用微扰方法进行近似处理。

在多体微扰理论下,基态零级能量就是构成基态斯莱特行列式的各分子轨道轨道能的代数和,零级波函数就是基态斯莱特行列式波函数。可以看出,多体微扰理论的零级能量精度甚至不如Hartree-Fock方程所得的能量。

根据微扰理论,能量的一级校正 E 0 ( 1 ) {\displaystyle E_{0}^{(1)}} 为:

E 0 ( 1 ) =< Ψ 0 ( 0 ) | V | Ψ 0 ( 0 ) > {\displaystyle E_{0}^{(1)}=<\Psi _{0}^{(0)}|V|\Psi _{0}^{(0)}>}

将微扰算子V的表达式代入得到:

可以看到,经过能量的一级校正后体系能量为:

根据微扰理论,体系基态能量的二级校正 E 0 ( 2 ) {\displaystyle E_{0}^{(2)}} 为:

E 0 ( 2 ) = n 0 | < Ψ 0 ( 0 ) | V | Ψ n ( 0 ) > | 2 E 0 ( 0 ) E n ( 0 ) {\displaystyle E_{0}^{(2)}=\sum _{n\neq \;0}{\frac {{\begin{vmatrix}<\Psi _{0}^{(0)}|V|\Psi _{n}^{(0)}>\end{vmatrix}}^{2}}{E_{0}^{(0)}-E_{n}^{(0)}}}}

其中 Ψ n ( 0 ) {\displaystyle \Psi _{n}^{(0)}} 为Hartree-Fock哈密顿算子本征能量为 E n ( 0 ) {\displaystyle E_{n}^{(0)}} 的波函数,其本质是体系激发态的斯莱特行列式

可以证明,只有对双激发的斯莱特行列式才有 | < Ψ 0 | V | Ψ a , b r , s > | 0 {\displaystyle {\begin{vmatrix}<\Psi _{0}|V|\Psi _{a,b}^{r,s}>\end{vmatrix}}\neq \;0} 所以体系能量的二级校正为:

E 0 ( 2 ) = a < b , r < s | < Ψ 0 | V | Ψ a , b r , s > | 2 ϵ a + ϵ b ϵ r ϵ s {\displaystyle E_{0}^{(2)}=\sum _{a<b,r<s}{\frac {{\begin{vmatrix}<\Psi _{0}|V|\Psi _{a,b}^{r,s}>\end{vmatrix}}^{2}}{\epsilon _{a}+\epsilon _{b}-\epsilon _{r}-\epsilon _{s}}}}

将分子项展开,得到:

E 0 ( 2 ) = a < b , r < s | < χ a χ b | | χ r χ s > | 2 ϵ a + ϵ b ϵ r ϵ s {\displaystyle E_{0}^{(2)}=\sum _{a<b,r<s}{\frac {{\begin{vmatrix}<\chi _{a}\chi _{b}||\chi _{r}\chi _{s}>\end{vmatrix}}^{2}}{\epsilon _{a}+\epsilon _{b}-\epsilon _{r}-\epsilon _{s}}}}

最终体系经过二级校正的基态能量为:

E = E 0 H F + a < b , r < s | < χ a χ b | | χ r χ s > | 2 ϵ a + ϵ b ϵ r ϵ s {\displaystyle E=E_{0}^{HF}+\sum _{a<b,r<s}{\frac {{\begin{vmatrix}<\chi _{a}\chi _{b}||\chi _{r}\chi _{s}>\end{vmatrix}}^{2}}{\epsilon _{a}+\epsilon _{b}-\epsilon _{r}-\epsilon _{s}}}}

由于式中 ϵ r {\displaystyle \epsilon _{r}} ϵ s {\displaystyle \epsilon _{s}} 是体系未占据分子轨道的轨道能,在基态,其能量衡高于 ϵ a {\displaystyle \epsilon _{a}} ϵ b {\displaystyle \epsilon _{b}} 所以能量的二级微扰是一个负值,因而考虑二级微扰的体系能量低于Hartree-Fock方程得到的体系能量,这一差异来自电子相互作用。

考虑二级校正的多体微扰计算简称MP2

更高级的校正是以较低级校正为计算基础的,随着校正级别的提高,计算量也急剧增加,理论上讲,随着校正级别的提高最终的体系能量会逐渐逼近真实值。目前的计算方法最高可以进行MP5计算,即体系能量的五级校正。

多体微扰理论方法是一种量子化学高级计算方法,在考虑相关能的计算方法中,多体微扰理论方法是计算量相对最小的。MP1可以达到HF方程的计算精度,MP2一般可以达到60%的相关能,与DCI方法相当,但计算过程仅需要计算少量双电子积分,远远小于DCI;MP4一般可以达到85%的相关能。

MPn方法是一个大小一致的方法,即对电子数不同的体系,使用MPn计算的精度是相同的,这一特性使得MPn方法特别适合进行化学反应的模拟计算。但是由于MPn方法以HF方程为基础,因而受到HF方程的局限,对于那些应用HF方程不能很好处理的体系,如非限制性开壳层体系,MPn方法也不能很好处理。

相关

  • 宇宙射线宇宙线亦称为宇宙射线,是来自外太空的带电高能亚原子粒子。它们可能会产生二次粒子穿透地球的大气层和表面。射线这个名词源自于曾被认为是电磁辐射的历史。主要的初级宇宙射
  • 郎德海花园场景《朗德海花园场景》(法语:Une scène au jardin de Roundhay),是路易斯·普林斯在1888年10月拍摄的短片,并为世界上已知最早的短片。本片约2秒长,被《吉尼斯世界纪录大全》收录为
  • 我们最幸福《我们最幸福:北韩人民的真实生活》(英语:Nothing to Envy: Ordinary Lives in North Korea)是《洛杉矶时报》记者芭芭拉·德米克(Barbara Demick)访问6位来自朝鲜清津市的脱北者
  • 和平学为了解决国际冲突与实现世界和平的秩序,和平研究(英语:peace studies)希望用科学的方法研究达成世界和平价值的方法及条件。比利时学者维勒(Werner Wintersteiner)曾建议将研究和
  • 蒂莫西·柴勒梅德蒂莫西·哈尔·柴勒梅德(英语:Timothée Hal Chalamet,1995年12月27日-)是一名法裔美国男演员。他在出演2012年电视连戏剧《国土安全》之前,凭借出演多部电影短片从而开始他的演艺
  • 南代托纳 (佛罗里达州)南代托纳(英语:South Daytona),是美国佛罗里达州下属的一座城市。建立于1938年。面积约 为12.5平方公里(约合4.9平方英里)。根据2010年美国人口普查,该市有人口13,221人。论人口在
  • 徐千舜徐千舜(1984年12月31日-),英语名:Patty Hsu,现任桃园市政府市政顾问、财团法人桃园市客家文化基金会董事、桃园客家青年会理事长、视觉设计师、台湾儿童音乐制作人。“卖脑瓜工作
  • 罗穆阿尔多·帕切科小何塞·安东尼奥·罗穆阿尔多·帕切科(José Antonio Romualdo Pacheco Jr.,1831年10月31日-1899年1月23日),美国政治家、外交家,共和党人,曾任加利福尼亚州副州长(1871年-1875年)、
  • 马丁·莱恩斯马丁·莱恩斯(英语:Martyn Lyons,1946年-),图书历史专家,生于伦敦,就读牛津大学,现任澳洲雪梨新南威尔士大学历史与哲学学院教授。专长为法国革命和拿破仑史,近年来钻研图书、阅读和书
  • 1770年代1770年代是指1770年至1779年的十年。