半生期

✍ dations ◷ 2025-04-02 17:18:58 #半生期
半衰期(英语:Half-life)是指某种特定物质的浓度经过某种反应降低到剩下初始时一半所消耗的时间,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常最关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。人们通常最关注的是一级动力学反应的半衰期,所谓一级动力学反应是指反应速率与体系中反应物含量的一次方成正比的反应。其方程为: d N d t = − λ N {displaystyle {frac {dN}{dt}}=-lambda N}其中 N {displaystyle N} 代表体系中反应物的量, t {displaystyle t} 为时间, d N d t {displaystyle {frac {dN}{dt}}} 便是体系发生反应的速率, λ {displaystyle lambda } 是这个反应的反应速率常数。由上述反应速率方程可以获得体系中反应物的量随时间变化的公式: N ( t ) = N 0 e − λ t {displaystyle N_{(t)}=N_{0}e^{-lambda t}}其中的 N 0 {displaystyle N_{0}} 是初始时刻反应物的量, N ( t ) {displaystyle N_{(t)}} 是t时刻反应物的量。可以计算当 N ( t ) = 1 2 N 0 {displaystyle N_{(t)}={frac {1}{2}}N_{0}} 时1 2 N ( 0 ) = N 0 e − λ t 1 2 {displaystyle {frac {1}{2}}N_{(0)}=N_{0}e^{-lambda t_{frac {1}{2}}}}则 1 2 = e − λ t 1 2 {displaystyle {frac {1}{2}}=e^{-lambda t_{frac {1}{2}}}}所以 t 1 2 = ln ⁡ 2 λ {displaystyle t_{frac {1}{2}}={frac {ln 2}{lambda }}}这是一个与初始状态无关的量,这就是通常意义上的半衰期。实际上,不只一级动力学反应有半衰期,其他动力学性质的反应也有半衰期,但是这些反应的半衰期的数值都与体系的初始状态相关,因而通常不是考查反应动力学性质的重要参数。对于一个n级反应,半衰期的表达式为: t 1 2 = 2 n − 1 − 1 [ ( n − 1 ) λ N 0 n − 1 ] ( n ≢ 1 ) {displaystyle t_{frac {1}{2}}={frac {2^{n-1}-1}{}}(nnot equiv ;1)} 其中的n为反应级数。在放射物理学中,核素的衰变是典型的一级反应,不同的核素有各自独特的半衰期数据,时间长的可以达到上亿年,短的半衰期仅为皮秒级的数据。半衰期越短,代表其原子越不稳定,每颗原子发生衰变的几率也越高。放射性核素发生衰变的半衰期非常稳定,很少受到环境因素的影响。只有符合一级动力学的化学反应才具有稳定的半衰期数据,与核衰变不同的是,化学反应的半衰期数据并非一成不变,而是会受到温度因素的影响,对于一般的反应,当温度上升时,反应速率常数会升高,半衰期会相应缩短,反之则会延长。对于一些反应,确定反应的半衰期与温度的关系,会有助于预测反应机理。非一级动力学反应的半衰期会随着起始状态的变化而发生变化,随时检测反应体系浓度的变化可以了解半衰期与起始状态之间的联系,从而了解一个化学反应的反应级数和表观速率常数。在药代动力学中,药物在体内的代谢过程按一级动力学过程进行,故而药物在体内也存在相对稳定的半衰期,称作药物消除半衰期或血浆半衰期,其具体定义是药物在生物体内浓度下降一半所需要的时间。与核衰变以及化学反应的半衰期不同,药物在体内代谢的半衰期受到较多因素的影响,不仅不同药物在同一个体的消除半衰期不同,而且同一种药物对于不同个体的消除半衰期也各不相同。甚至同一药物对于同一个体,消除半衰期也会随身体状况和用药情况而发生波动,影响半衰期长短的主要因素是人体内负责代谢药物的肝药酶系统活性。准确掌握个体对特定药物的消除半衰期,可以有针对性地设计给药方案,实现个体化给药。除了消除半衰期,还有以药物生理活性为判据的生物半衰期即药物的生物效应下降一半所消耗的时间。这一数据受到更多因素的影响,当药物活性与血药浓度线性相关时,生物半衰期与消除半衰期直接相关,当活性浓度关系较为复杂时,生物半衰期常会显示出异常行为。除了药物代谢过程,控释制剂的释放以及一些药物的吸收过程也遵循一级反应动力学,因此这些过程的半衰期也是非常重要的药代动力学数据。

相关

  • 电解质平衡紊乱电解质在生物体的自平衡维持上相当的重要。电解质可调节心臓及神经机能、输送氧气、维持体液平衡(英语:fluid balance)及酸碱平衡等。电解质的不平衡可能因为以下原因而产生:过
  • Dy4f10 6s22, 8, 18, 28, 8, 2蒸气压3, 2, 1 (弱第一:573.0 kJ·mol−1 第二:1130 kJ·mol−1 第三:2200 kJ·mol主条目:镝的同位素.mw-parser-output ruby>rt,.mw-parser-out
  • 希尔德里克一世希尔德里克一世(法语:Childéric Ier,440年-481年6月26日),自457或​​458年起任萨利昂法兰克人国王。他的名字来自法兰克语hild-“战斗”和-rik“强大”,Childericus是其拉丁文形
  • 亨利一世亨利一世(英语:Henry I;约1068年–1135年12月1日),亦被称为儒雅者亨利(英语:Henry Beauclerc),是1100年至1135年在位的英格兰国王。亨利是征服者威廉第四子,曾学习拉丁语并接受博雅教
  • 缬草缬草(学名:Valeriana officinalis)是一种多年生耐寒开花植物,在北半球每年6月至9月是其花期,会开出芬芳的白色或粉红色花朵。当花朵被放在花瓶里时,其散发出来的香味因过于浓烈,会
  • 土 (消歧义)土,即土壤,是一种自然体,由数层不同厚度的土层所构成,主要成分是矿物质。土还可以指:
  • 朗县朗县(Long County, Georgia)是美国乔治亚州东部的一个县。面积1,045平方公里。根据美国2000年人口普查,共有人口10,304人。县治卢多维西 (Ludowici)。成立于1920年8月14日。县
  • 胡人胡人,或称胡族,中国古代汉族对外族的称呼,主要是指欧亚大草原上的游牧民。该名称来源一说是匈奴人在历史上自称为“胡”,另有说法为鹘人的错写,因为草原游牧民族多有养鹰的传统,秦
  • 国际象棋國際象棋(英语:chess),又称西洋棋,是一种二人对弈的战术棋盘游戏,也是世界上最流行的游戏之一。世界各地数以百万计的人在家中、俱乐部(英语:chess club)中、网络上以通信国际象棋(英
  • 爱尔兰独立战争英国陆军:20,000人皇家爱尔兰警队:9,700人爱尔兰独立战争(英语:Irish War of Independence;爱尔兰语:Cogadh na Saoirse)又称英爱战争(英语:Anglo-Irish War;爱尔兰语:Cogadh Angla-Éi