耗散结构理论

✍ dations ◷ 2025-04-04 11:08:37 #耗散结构理论
耗散系统(Dissipative system)是指远离热力学平衡状态的开放系统,此系统和外环境交换能量、物质和熵而继续维持平衡,对这种结构的研究,解释了自然界许多以前无法解释的现象。耗散结构一词由比利时物理学家、化学家伊里亚·普里高津发明。普里高津创立了耗散结构理论,研究一个系统从混沌无序向有序转化的机理、条件和规律的科学,他为此曾获1977年诺贝尔化学奖。常见的耗散结构包括对流、气旋、热带气旋及生物体。像镭射、瑞利–贝纳尔对流(英语:Rayleigh–Bénard convection)及B-Z反应也是耗散结构的例子。耗散结构的特点是自发生的对称性破缺(各向异性)以及复杂,甚至混沌的结构。普里高津考虑的耗散结构有其动态的机制,因此可以视为热力学上的稳态,有时也可以用适当的非平衡热力学中的极值定理(英语:extremal principles in non-equilibrium thermodynamics)来描述。以前的物理理论认为,只有能量最低时,系统最稳定,否则系统将消耗能量,产生熵,而使系统不稳定。耗散结构理论认为在高能量的情况下,开放系统也可以维持稳定。例如生物体,以前按照热力学定律,是一种极不稳定的结构,不断地产生熵而应自行解体,但实际是反而能不断自我完善。其实生物体是一种开放结构,不断从环境中吸收能量和物质,而向环境放出熵,因而能以破坏环境的方式保持自身系统的稳定。城市也是一种耗散结构。牛顿的万有引力描述的是无始无终按规律运行的美好世界,而热力学第二定律描述的是一切终将走向灭亡的热寂,相较之下,耗散结构描述在远离平衡态的开放系统中“生”的机制,但其先决假定条件是存在提供能量、物质,并且可以交换熵的外环境。一开放系统的熵变化可以表示如下:熵变化可以分解为系统内( d S i {displaystyle ,dS_{i}} )及系统外的( d S e {displaystyle ,dS_{e}} ,和环境交换的熵)。在封闭系统中系统无法和环境交换熵,因此( d S = d S i {displaystyle dS=dS_{i}} ),根据热力学第二定律 d S i ≥ 0 {displaystyle dS_{i}geq 0} (等号成立时表示平衡),因此 d S ≥ 0 {displaystyle dSgeq 0} 。不过在开放系统中,系统可以和环境交换熵,因此可以形成一个稳态的结构,假设总熵不变 d S = 0 {displaystyle dS=0} ,根据热力学第二定律 d S i ≥ 0 {displaystyle dS_{i}geq 0} ,因此可得在系统及控制理论中,耗散系统是满足“耗散不等式”的动力系统,假设其状态、输入及输出分别为 x ( t ) {displaystyle x(t)} 、 u ( t ) {displaystyle u(t)} 及 y ( t ) {displaystyle y(t)} 。假设一个函数 w = u ⋅ y {displaystyle w=ucdot y} ,其针对任何输入 u {displaystyle u} 及初始状态 x ( 0 ) {displaystyle x(0)} ,在任意有限时间内的积分都为有限值,将此函数称为供应率函数,则一个系统为耗散系统的条件是存在一个连续的非负函数 V ( x ) {displaystyle V(x)} (称为储存函数),使得针对任意输入 u {displaystyle u} 及初始状态 x ( 0 ) {displaystyle x(0)} ,以下的不等式(耗散不等式)都成立:耗散系统的耗散不等式也可以表示为以下的形式:物理的解释可将 V ( x ) {displaystyle V(x)} 视为是系统的能量,而 u ⋅ y {displaystyle ucdot y} 是单位时间输入系统的能量。此表示方式和李雅普诺夫稳定性有很强的关系,在系统有特定可控制性及可观察性的条件时,储存函数可以作为李雅普诺夫函数。简单来说,耗散理论可以用来设计线性及非线性系统的回授控制。耗散系统理论是由V.M. Popov、J.C. Willems、D.J. Hill 及P. Moylan等学者提出。对于线性非时变系统,耗散系统即为正实转移函数,而且Kalman–Yakubovich–Popov引理可以联系正实系统的相空间及频域相关特性。由于耗散理论在应用上的重要性.其仍为系统及控制研究的热门领域之一。量子力学及其他以哈密顿力学为基础的经典动态系统,具有时间可逆转性(英语:Time reversibility),其本质无法描述耗散系统。理论上可以将系统进行弱耦合,以谐振子为例,可以将许多处于热平衡,但频率各自不同的谐振子视为一个整体,整体有很宽的频谱,记录整体平均的情形。会得到一个主方程,是林德布劳德方程(英语:Lindblad equation)的特例,而林德布劳德方程可视为刘维尔定理的量子力学版本。

相关

  • 中国饮食 - æœé¥° - 建筑 - 文物 - 节日 - 教育 科学 - 五术(医学 - 术数) - æ­
  • 红细胞生成素1BUY, 1CN4, 1EER· hormone activity · protein binding· regulation of transcription from RNA polymerase II promoter · signal transduction · embryo implant
  • 表征遗传表观遗传学(英语:epigenetics)又译为表征遗传学、拟遗传学、表遗传学、外遗传学以及后遗传学,在生物学和特定的遗传学领域,其研究的是在不改变DNA序列的前提下,通过某些机制引起可
  • D10(Antifungals for dermatological use)(Emollients and protectives)(Preparations for treatment of wounds and ulcers)(Antipruritics, including antihistamines, anesthetics,
  • 雇佣雇佣(英语:employment,意近:就业)是指二个伙伴之间的契约关系,其中一方为雇佣者(雇主、雇佣人),另一方为被雇佣者(雇员)。从法律意义来看,通过双方契约约定,“被雇佣者”为“雇佣者”工作
  • 腺瘤腺瘤(英语:Adenoma,/ˌædᵻˈnoʊmə/)是腺源性或腺状上皮组织产生的良性肿瘤。包括肾上腺、脑下垂体、甲状腺、前列腺等器官在内,许多腺器官都可能形成腺瘤。
  • 质壁分离质壁分离指的是植物细胞在高渗环境下,因水分从细胞中流失而出现的细胞质与细胞壁分离的现象。细胞的渗透压可通过下式计算:π = − g ×
  • 胞吐胞吐作用(Exocytosis)是指细胞内的大分子物质通过小泡与细胞质膜 融合的过程,在融合蛋白的帮助下被释放到细胞外基质。它可以看作是细胞内吞作用的反向作用。胞吐作用可以自发
  • 军事管辖区法国军事管辖区(德语:Militärverwaltung in Frankreich;法语:Occupation de la France par l'Allemagne)是纳粹德国在第二次世界大战中建立的临时管辖机构(英语:Military Administ
  • Equus mulus Erxleben, 1777骡子(学名:Equus ferus × asinus)是马和驴的杂交种。严格地说,在中文里母马和公驴的后代称为马骡(“骡,驴父马母者也”《说文解字注》。“骡”是“骡