耗散结构理论

✍ dations ◷ 2025-06-27 14:55:41 #耗散结构理论
耗散系统(Dissipative system)是指远离热力学平衡状态的开放系统,此系统和外环境交换能量、物质和熵而继续维持平衡,对这种结构的研究,解释了自然界许多以前无法解释的现象。耗散结构一词由比利时物理学家、化学家伊里亚·普里高津发明。普里高津创立了耗散结构理论,研究一个系统从混沌无序向有序转化的机理、条件和规律的科学,他为此曾获1977年诺贝尔化学奖。常见的耗散结构包括对流、气旋、热带气旋及生物体。像镭射、瑞利–贝纳尔对流(英语:Rayleigh–Bénard convection)及B-Z反应也是耗散结构的例子。耗散结构的特点是自发生的对称性破缺(各向异性)以及复杂,甚至混沌的结构。普里高津考虑的耗散结构有其动态的机制,因此可以视为热力学上的稳态,有时也可以用适当的非平衡热力学中的极值定理(英语:extremal principles in non-equilibrium thermodynamics)来描述。以前的物理理论认为,只有能量最低时,系统最稳定,否则系统将消耗能量,产生熵,而使系统不稳定。耗散结构理论认为在高能量的情况下,开放系统也可以维持稳定。例如生物体,以前按照热力学定律,是一种极不稳定的结构,不断地产生熵而应自行解体,但实际是反而能不断自我完善。其实生物体是一种开放结构,不断从环境中吸收能量和物质,而向环境放出熵,因而能以破坏环境的方式保持自身系统的稳定。城市也是一种耗散结构。牛顿的万有引力描述的是无始无终按规律运行的美好世界,而热力学第二定律描述的是一切终将走向灭亡的热寂,相较之下,耗散结构描述在远离平衡态的开放系统中“生”的机制,但其先决假定条件是存在提供能量、物质,并且可以交换熵的外环境。一开放系统的熵变化可以表示如下:熵变化可以分解为系统内( d S i {displaystyle ,dS_{i}} )及系统外的( d S e {displaystyle ,dS_{e}} ,和环境交换的熵)。在封闭系统中系统无法和环境交换熵,因此( d S = d S i {displaystyle dS=dS_{i}} ),根据热力学第二定律 d S i ≥ 0 {displaystyle dS_{i}geq 0} (等号成立时表示平衡),因此 d S ≥ 0 {displaystyle dSgeq 0} 。不过在开放系统中,系统可以和环境交换熵,因此可以形成一个稳态的结构,假设总熵不变 d S = 0 {displaystyle dS=0} ,根据热力学第二定律 d S i ≥ 0 {displaystyle dS_{i}geq 0} ,因此可得在系统及控制理论中,耗散系统是满足“耗散不等式”的动力系统,假设其状态、输入及输出分别为 x ( t ) {displaystyle x(t)} 、 u ( t ) {displaystyle u(t)} 及 y ( t ) {displaystyle y(t)} 。假设一个函数 w = u ⋅ y {displaystyle w=ucdot y} ,其针对任何输入 u {displaystyle u} 及初始状态 x ( 0 ) {displaystyle x(0)} ,在任意有限时间内的积分都为有限值,将此函数称为供应率函数,则一个系统为耗散系统的条件是存在一个连续的非负函数 V ( x ) {displaystyle V(x)} (称为储存函数),使得针对任意输入 u {displaystyle u} 及初始状态 x ( 0 ) {displaystyle x(0)} ,以下的不等式(耗散不等式)都成立:耗散系统的耗散不等式也可以表示为以下的形式:物理的解释可将 V ( x ) {displaystyle V(x)} 视为是系统的能量,而 u ⋅ y {displaystyle ucdot y} 是单位时间输入系统的能量。此表示方式和李雅普诺夫稳定性有很强的关系,在系统有特定可控制性及可观察性的条件时,储存函数可以作为李雅普诺夫函数。简单来说,耗散理论可以用来设计线性及非线性系统的回授控制。耗散系统理论是由V.M. Popov、J.C. Willems、D.J. Hill 及P. Moylan等学者提出。对于线性非时变系统,耗散系统即为正实转移函数,而且Kalman–Yakubovich–Popov引理可以联系正实系统的相空间及频域相关特性。由于耗散理论在应用上的重要性.其仍为系统及控制研究的热门领域之一。量子力学及其他以哈密顿力学为基础的经典动态系统,具有时间可逆转性(英语:Time reversibility),其本质无法描述耗散系统。理论上可以将系统进行弱耦合,以谐振子为例,可以将许多处于热平衡,但频率各自不同的谐振子视为一个整体,整体有很宽的频谱,记录整体平均的情形。会得到一个主方程,是林德布劳德方程(英语:Lindblad equation)的特例,而林德布劳德方程可视为刘维尔定理的量子力学版本。

相关

  • 头在解剖学上是指动物的吻端部分,通常包括脑、眼、耳、鼻、口等器官(所有这些器官都支撑着各种感官功能,如视觉、听觉、嗅觉、味觉)。有些非常低等的动物可能没有头部,但多数两侧
  • 环氧酶环氧合酶(拉丁语:Cyclooxygenase,简称COX)是一种酶(又名酵素),负责合成重要的生物激素——前列腺素家族的导介物质。当身体组织受到某种刺激如外伤、感染等会激活环氧合酶,使花生四
  • 内皮细胞内皮细胞或血管内皮是一薄层的专门上皮细胞,由一层扁平细胞所组成。它形成血管的内壁,是血管管腔内血液及其他血管壁(单层鳞状上皮)的界面。内皮细胞是沿着整个循环系统,由心脏直
  • 17α-羟孕酮17α-羟孕酮(英语:17α-Hydroxyprogesterone,17α-OHP),有时就简称为羟孕酮(英语:hydroxyprogesterone,OHP)是一种孕酮类似的内源性的孕激素类甾体激素,同时也是很多内源性甾体激素生
  • 费米估算在科学中,尤其是在物理和工程教育中,费米问题(Fermi problem)或费米估算是一个用来做量纲分析,估算和清晰地验证一个假设的估算问题。命名自恩里科·费米。这类问题通常涉及对于
  • 马偕医学院马偕学校财团法人马偕医学院(英语:Mackay Medical College),是一所由台湾基督长老教会创立于台湾新北三芝的私立医学院。2009年3月30日,教育部通过该校的立案申请,准予立案招生,成
  • 主动脉剥离主动脉夹层(英语:aortic dissection;法语:dissection aortique;德语:Aortendissektion),又译为“主动脉剥离”或“心血管动脉撕裂”,是因为主动脉血管内膜(英语:Tunica intima)受伤,使得
  • 基因靶向基因标的(英语:gene targeting,又称为基因标靶)是一种利用同源重组方法改变生物体某一内源基因的遗传学技术。这一技术可以用于删除某一基因、去除外显子或导入点突变,从而可以对
  • 欧盟委员会欧洲联盟委员会(英语:European Commission;法语:Commission européenne;德语:Europäische Kommission;意大利语:Commissione Europea),简称欧盟委员会,是欧洲联盟下辖的一个超国家机
  • 真核生物域真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物,而不包括细菌和古菌,因它