首页 >
椭球
✍ dations ◷ 2025-09-15 23:13:32 #椭球
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中
+
θ
′
{displaystyle {color {white}+}!!!theta {color {white}'},!}
是天顶角,
+
φ
−
{displaystyle {color {white}+}!!!varphi {color {white}!!!-},!}
是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中
β
{displaystyle beta ,!}
是一点的参数纬度,
+
λ
′
{displaystyle {color {white}+}!!!lambda {color {white}'},!}
是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中
p
≈
1.6075
{displaystyle papprox 1.6075,}
。这样相对误差最多为
1.061
{displaystyle 1.061,}
%(Knud Thomsen公式);
p
=
8
5
=
1.6
{displaystyle p={frac {8}{5}}=1.6,}
的值对于接近于球的椭球较为适宜,其相对误差最多为
1.178
{displaystyle 1.178,}
%(David W. Cantrell公式)。对于
a
=
b
{displaystyle a=b,}
的情况,有一个精确的公式:c
{displaystyle c,}
比
a
{displaystyle a,}
和
b
{displaystyle b,}
都小很多时,表面积近似等于
2
π
a
b
.
{displaystyle 2pi ab.,!}
。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径
d
2
{displaystyle {d_{2}}}
与
d
1
{displaystyle {d_{1}}}
可表示为d
1
,
2
2
=
8
(
1
−
z
c
2
∑
i
=
1
3
r
i
2
sin
2
p
i
)
∑
i
=
1
3
cos
2
p
i
r
i
2
±
(
∑
i
=
1
3
cos
2
p
i
r
i
2
)
2
−
4
(
∑
i
=
1
3
r
i
2
sin
2
p
i
)
/
r
1
2
r
2
2
r
3
2
{displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中
ρ
{displaystyle rho ,!}
是密度。均匀密度的椭球的转动惯量为:其中
I
x
x
{displaystyle I_{mathrm {xx} },!}
、
I
y
y
{displaystyle I_{mathrm {yy} },!}
和
I
z
z
{displaystyle I_{mathrm {zz} },!}
分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。
相关
- 台大医院国立台湾大学医学院附设医院,简称台大医院(英语:National Taiwan University Hospital),是台湾一所公立医院,乃台湾第一所提供西式医疗服务的政府医疗机构,总院区位于台北市中山南
- 空肠在消化系统的解剖学方面,空肠(Jejunum)是整条小肠的中间,在十二指肠和回肠之间。成人的空肠通常是2.5米长。酸碱度通常是在7和8之间(中性或轻微的碱性)。空肠内部的表面有大量的绒
- 目录目录可以指:
- 2017亚太经合组织第二十五次领导人非正式会议(英语:The 25th APEC Economic Leaders' Meeting),简称英语:APEC Vietnam 2017、2017年越南APEC峰会,本届会议正值亚洲太平洋经济合作组织
- 宗法制四配颜回 · 孟子 · 曾参 · 孔伋日本藤原惺窝 · 林罗山 · 室鸠巢新井白石 · 雨森芳洲朝鲜薛聪 · 权近 · 吉再 · 安珦 · 李穑李滉 · 王仁 · 李齐贤
- 本吉拉省本格拉省( Benguela)位于安哥拉中西,与南广萨省、万博省、威拉省、纳米贝省等省份相邻。
- 阳萎勃起功能障碍(Erectile dysfunction,缩写:ED),为男性性功能障碍的一种,其特征在于阴茎在性行为期间无法勃起或维持勃起:538-39。勃起功能障碍可能会产生心理上的后果,因为它与关系
- 概率测度概率测度是概率空间中定义在一个事件集合上的、满足测度性质(例如可列可加性)的实值函数。概率测度与一般意义上的测度(包括类似面积或体积等概念)的区别在于,概率测度之于整个概
- 守望的天空《守望的天空》(英文:Watch Sky),2012年2月16在深圳电视台都市频道首播,3月14日上映于湖南电视台湖南卫视的现代情感励志剧。讲述了一个平凡的女子葡萄(李沁 饰),在母亲病逝后,独自
- 有蹄类有蹄类是指几类使用趾尖(一般都有蹄)来支撑身体的哺乳动物。它们共有几个目,当中有奇蹄目和鲸偶蹄目仍然生存。有蹄类是一个支序分类学的分支,或只是一个分类单元仍存有争议,因为