线性关系

✍ dations ◷ 2025-12-10 21:03:47 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 肺气肿肺气肿(pulmonary emphysema)是一种肺部病理状态,指终末细支气管远端的肺组织因残气量增多造成持久性扩张,导致肺部纤维组织弹性减弱,肺泡间隔破坏,容积增大,以致影响正常呼吸的现
  • 轻偏瘫轻偏瘫(英语:Hemi-paresis)是人体左右某一侧出现的麻痹的症状,最严重时将导致偏瘫(英语:Hemi-plegia),或称半身不遂,即半个身体的完全麻痹。这两种症状的成因有很多,既有先天原因也有
  • 柳树约400种柳,或柳树,是对柳属(Salix)植物的统称,其下共有四百多种物种,常见于北半球的寒带及温带。柳属植物要进行杂交非常容易,不论是天然或是人工的混种都很普遍。Salix × sepulcr
  • 千米千米亦称公里(法语:kilomètre → 英式英文:kilometre、美式英文:kilometer),是一种长度计量单位,等于一千米,是国际单位制之一,符号为km。根据定义,光在真空中每秒传播30万千米。在口
  • 泛美运动会泛美运动会是美洲的国际综合性体育活动,每隔四年举办一次。泛美运动会源自1920年代的中美洲运动会。1932年,举行泛美运动会的倡议首度被提出,其后成立了“泛美体育组织”(西班牙
  • 核幔边界古登堡界面(古氏不连续面)是地核与地幔的交界。1914年,德国地球物理学家宾诺·古登堡(Beno Gutenberg)发现地下2885千米处地震波的传播速度有明显变化,其中纵波的速度明显下降,横波
  • 3位菲尔兹奖得主各大学菲尔兹奖得主列表详列了各个与菲尔兹奖(Fields Medal)得主有学术关联的大学。自1936年起至2018年,菲尔兹奖共颁给过60位个人。 本列表对每个菲尔兹得主均一视同仁,无论四
  • 外国驻台机构驻台湾外交机构列表是列出所有驻台湾的外交代表机构,包括官方及非官方的机构。大部分国家在台北市设置具有大使馆功能的代表处,部分同时于高雄市、台中市设立具备领事馆功能之
  • 吐噶喇群岛吐噶喇群岛是琉球群岛北部的一个群岛,在行政区划上,全境设立日本鹿儿岛县十岛村。由于“噶”字在日语中甚少使用,直到JIS X 0208中才被收录,因此“吐噶喇”常常被用片假名表记作
  • 喇培康喇培康(?-),中国企业家和电影人,曾先后就任中国电影集团进出口分公司副总经理、中国电影合作制片公司常务副总经理、中国电影合作制片公司总经理和广电总局电影局副局长等职务。20