线性关系

✍ dations ◷ 2025-07-24 09:40:22 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 自由大宪章《大宪章》(拉丁语:Magna Carta,英语:The Great Charter),又称作《自由大宪章》(拉丁语:Magna Carta Libertatum;英语:The Great Charter of the Liberties)是英格兰国王约翰最初于1215
  • 加尔默罗会修女的对话《圣衣会修女对话录》(Dialogues des Carmélites)是一部法国歌剧,分为十二个场景,由弦乐间隔,弗朗西斯·普朗克于1956年完成。《圣衣会修女对话录》内容讲述圣衣会修女在1794年
  • 内流河河流(江、河、江河、河道,古称水、川、河川,局地称溪、港、郭勒、沐沦、曲、藏布等)是自然汇入海洋、湖泊的流水,通常为淡水。在少数情况下,河流流入地下或者在汇入另一水体之前便
  • 氰化铵氰化铵(Ammonium cyanide),化学式为NH4CN,是氰和铵的化合物。氰化铵通常用于有机合成。由于氰化铵是不稳定的,所以它不会用作商业销售。氰化铵可由氰化钾和氯化铵在液氨中反应得
  • 填字游戏填字游戏是一种常见的纸上益智游戏。游戏一般给出一个矩形的表格。这个表格被分割为若干个大小相同的方格,方格的颜色有白色与黑色两种。白色的方格组成一些交叉的行与列,行列
  • 人民力量党人民力量党(1998年11月9日-2008年12月2日,泰语:พรรคพลังประชาชน)是泰国的政党之一,成立于1998年11月9日。普遍认为它在2006年以后演变为原执政党泰爱泰党的化身。
  • 苏联内务部队内务部内卫部队(俄语:Внутренние войска Министерства внутренних дел,缩写为ВВ)是俄罗斯联邦负责保卫国内主要目标、维护国内公共
  • 琼斯戈登·道格拉斯·琼斯(英语:Gordon Douglas Jones,1954年5月4日-),美国民主党籍政治人物、律师,2018年1月起担任阿拉巴马州联邦参议员。琼斯出生于阿拉巴马州费尔菲尔德,于1976年获
  • 大庾岭坐标:34°16′N 108°54′E / 34.267°N 108.900°E / 34.267; 108.900大庾岭,古名塞上、台岭,又名东峤、梅岭、庾岭,为五岭之一,位于江西、广东两省的边境,一向是广东与江西的交
  • 天柱县天柱县是中华人民共和国贵州省黔东南苗族侗族自治州东部下辖的一个县。天柱县位于贵州省东部,天柱县与湖南省新晃县、靖州县、会同县、芷江县及贵州省剑河县、锦屏县、三穗县