线性关系

✍ dations ◷ 2025-05-18 00:42:11 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 信息科学信息学,旧称情报学(日本人翻译),主要是指以信息为研究对象,利用计算机及其程序设计等技术为研究工具来分析问题、解决问题的学问,是以扩展人类的信息功能为主要目标的一门综合性学
  • 下淡水溪铁桥坐标:22°39′41.27″N 120°26′9.72″E / 22.6614639°N 120.4360333°E / 22.6614639; 120.4360333下淡水溪铁桥位于台湾铁路管理局屏东线九曲堂车站至六块厝车站间,桥面横
  • 索马里判官政治判官政治(Xeer,索马里语发音:ħeːr),是索马里传统文化中的多中心法律系统,在该系统下,部落长老们作为法官依先例调停争端。 这是一个习惯法如何运行于无政府社会的良好例子,也是自
  • 古蕨属Archaeopteris fissilis Archaeopteris halliana Archaeopteris hibernica Archaeopteris macilenta Archaeopteris obtusa古蕨属(学名:Archaeopteris),又名古羊齿属,是一属已灭
  • 朴彭年朴彭年(1417年-1456年),字仁叟,号醉琴轩,朝鲜王朝初期的一位学者、官员。死六臣之一。本贯顺天朴氏。其生父是朴终林。1434年通过科举考试,后来被朝鲜世宗任命为集贤殿学士,参与民族
  • 陈桢陈桢(1894年3月14日-1957年11月15日),字席山,中年后改字协三,动物遗传学家,出生于江苏邗江,改籍江西铅山,1918年毕业于金陵大学,获得农学士学位,随后留校担任育种学助教,1919年考取清华
  • 定翼机固定翼飞机(英语:Fixed-wing aeroplane),简称定翼机,常被再简称为飞机(英文:aeroplane, airplane),是指由动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重
  • 第二次人民力量革命第二次人民力量革命(Second People Power Revolution)是2001年1月由菲律宾人民、天主教枢机主教辛海棉、副总统艾若育、菲律宾军方及内阁成员等拒绝继续支持被控贪腐的菲律宾
  • 石峰区石峰区是中国湖南省株洲市所辖的一个市辖区。面积166.48平方公里,人口25万人。石峰区辖3个街道办事处和3个镇。田心街道、响石岭街道、清水塘街道、铜塘湾街道、井龙街道、学
  • 非洲国家人口列表这是一个非洲国家和地区的人口列表,按人口由2015年中的数值排列。(%)