线性关系

✍ dations ◷ 2025-06-07 18:33:52 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 地貌学地貌学,又称地形学,是一门研究地球表面起伏形态、分布规律、物质结构、发展历史和开发利用的科学,是自然地理学的一个分支学科,也是地质学和地理学之间的一门边缘交叉学科。从语
  • 迈克尔·霍顿迈克尔·霍顿(英语:Michael Houghton,),英国生物化学家,参与开发丙型肝炎测试。霍顿1972年获东英吉利大学学士学位,并于1977年获伦敦大学国王学院生物学博士学位。然后,他在白金汉郡
  • 查理-盖吕萨克定律查理定律(英语:Charles's law),又称查理-盖-吕萨克定律,是盖-吕萨克在1802年发布,但他参考了雅克·查理(英语:Jacques Charles)的研究,故后来该定律多称作查理定律。当压强不变时,理想
  • SuicideSuicide通常指自杀(英语:Suicide),即结束自己生命的行为。此外,suicide还可以指:集体自杀指一群人为了同一目的而自杀或互相杀害。
  • 南蒂罗尔考古博物馆南蒂罗尔考古学博物馆(德语:Südtiroler Archäologiemuseum; 意大利语:Museo archeologico dell'Alto Adige)是意大利北部南蒂罗尔首府博尔扎诺一个专业的考古学博物馆。博物馆
  • 蝙蝠在亚洲和环太平洋地区,人们有时食用蝙蝠。中华人民共和国、印度尼西亚、泰国、越南、帕劳和关岛等地皆有人类食用蝙蝠的记载。在关岛,人们把马里亚纳狐蝠当作美味。除了食用外
  • 欧亚局中国人民解放军军徽中央军委国际军事合作办公室欧亚局,位于北京市,是中央军委国际军事合作办公室下属局,负责该办公室欧亚业务。原先国防部外事办公室设有国防部外事办公室欧亚
  • 中亚历史中亚历史深受中亚地区的气候和地理特点的制约。由于干旱,该地区很难进行农业生产,而由于远离海洋,也使得该地区难以进行贸易。因此,该地区少有大城市,数千年来,都被草原上游牧的马
  • 圣博纳迪诺县圣贝纳迪诺县(英文:San Bernardino County)是美国加利福尼亚州东南部的一个县,东邻内华达州和亚利桑那州,东界科罗拉多河。面积52,073平方公里,是美国本土面积最大的县(排除被称为
  • 打糕 (朝鲜)汤饭馔打糕也称米糕、蒸糕(朝鲜语:떡),是朝鲜族传统稻米食品,把糯米煮熟后捶打而成。其传统做法是将蒸熟的米放到木槽或石槽里,用木槌反复捶打,直到打碎每一粒饭为止。而后将其切成