线性关系

✍ dations ◷ 2025-07-01 08:44:18 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 疤痕疤痕是皮肤损伤后取代正常皮肤的纤维组织(纤维化),它是生物身体皮肤和其他组织的创面修复过程中的结果。因此,疤痕是自然愈合过程的一部分。除了非常轻微的病变,每一个伤口(如意外
  • 伊巴密浓达伊巴密浓达(英语: Epaminondas;希腊语:Ἐπαμεινώνδας,又译作埃帕米农达、义巴敏诺达,前418年-前362年),古希腊城邦底比斯的将军与政治家。其领导底比斯脱离斯巴达的控制,
  • 车部,为汉字索引中的部首之一,康熙字典214个部首中的第一百五十九个(七划的则为第十三个)。就正体中文中,车部归于七划部首,简体中文则归四划。车部通常从左方、下方为部字。且无
  • 下纲纲(英语:class,拉丁语:classis,复数:classes)是生物分类法中的一个分类级别,以及该级别中的分类法的分类单元。其他众所周知的级别按照大小降序排列是生物、域、界、门、科、属和物
  • 马卢尔县马卢尔县(英语:Malheur County,发音: /mælˈhɪər/)是美国俄勒冈州东南部的一个县,东隔蛇河与爱达荷州相望,南邻内华达州。马卢尔县亦是组成东俄勒冈的八个县份之一。马卢尔县面
  • 把脉切诊,包括脉诊和按诊两部分,是医生运用双手对病人的一定部位进行触、摸、按压,从而了解疾病情况的方法。脉诊是按脉搏;按诊是对病人的肌肤、手足、脘腹及其病变部位的触摸按压,以
  • 赛特赛特(Set,也作Seth,Setekh等),又名西德,在埃及神话中最初是力量之神,战神,风暴之神,沙漠之神以及外陆之神。他保护沙漠中的商队,但同时又发起沙暴袭击他们。他是盖布与努特的儿子,奈芙
  • 箬竹箬竹(学名:Indocalamus tessellatus)为禾本科箬竹属下的一个种。
  • 台湾新北地方法院23652新北市土城区金城路2段249号电话:(02)2261-671424°59′04.15″N 121°27′29.69″E / 24.9844861°N 121.4582472°E / 24.9844861; 121.4582472坐标:24°59′04.15″N
  • 拉夫拉夫县(Love County, Oklahoma)是美国奥克拉荷马州南部的一个县,南隔雷德河与德克萨斯州相望。面积1,178平方公里。根据美国2000年人口普查,共有人口8,831人。县治玛丽埃塔(Marie