线性关系

✍ dations ◷ 2025-11-19 15:54:00 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 先天畸形先天性障碍,又称先天性疾病、先天畸形、先天缺陷,是指发育中的胎儿因为遗传性疾病或发育环境等因素导致某个部位特征结构畸形,导致在婴儿出生时即有的病症,包括了身体(英语:Physic
  • 伪阴性第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误为统计学中推论统计学的名词。在假设检验中,有一种假设称为“零假设(虚无假设)”;假设检验的目的是利
  • 化脓脓是一种黄色或黄白色液体,是动物身体在发炎反应中所生成的物质,脓在周围组织所堆积而成的区域称为脓疮。这些液体,是由死亡或存活的白血球细胞所制造。脓存于患部内触碰会有疼
  • 轮班工作制轮班工作制(英文:Shift work),是一些行业须在假日、晚上、周末和朝九晚五以外等非主流上班时间运作及提供服务时实施的工作制度,例如服务业、公共事业、医药业(英语:Health profess
  • 协奏曲协奏曲(concerto),指一件或数件独奏乐器和乐队协同演奏,既有对比又相互交融的作品。由单一乐器为主、管弦乐团为辅的协奏乐曲,充分展现了独奏乐器的特色,又不失合奏的壮丽。用一件
  • 盗窃、抢夺枪支、弹药、爆炸物、危险物质罪盗窃、抢夺枪支、弹药、爆炸物、危险物质罪,是指《中华人民共和国刑法》所规定的一个罪名,最高可判处死刑。盗窃、抢夺枪支、弹药、爆炸物、危险物质罪,危害公共安全的,处三年以
  • μ子偶素缈子偶素或称缈子素是一个由反缈子和电子构成的奇异原子,符号为Mu或 μ+e−,由Vernon W. Hughes于1960年发现,在缈子偶素两微秒的半衰期中,科学家已经可以合成氯化缈子偶素(MuCl)
  • 苹果汁苹果汁(英语:apple juice),是从苹果果肉榨出的果汁。苹果汁的制造是先压榨苹果果肉,再将果汁部分过滤出来,通常在工厂中会再进行低温杀菌处理。 由于自制苹果汁的过程必须榨汁再将
  • 阿斯托尔·皮亚佐拉阿斯托尔·潘塔莱昂·皮亚佐拉(西班牙文:Ástor Pantaleón Piazzolla,1921年3月11日-1992年7月5日),阿根廷作曲家以及班多纽手风琴(Bandoneon)演奏家。作为作曲家的皮亚佐拉,以全方
  • 康沃利斯侯爵第一代康沃利斯侯爵查尔斯·康沃利斯,KG,PC(Charles Cornwallis, 1st Marquess Cornwallis,1738年12月31日-1805年10月5日),又译康华里和康华利等,英国军人、殖民地官员及政治家,美国