线性关系

✍ dations ◷ 2025-01-31 11:01:40 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 生物病毒分类表本页面列出了生物病毒的分类,包含病毒以及类病毒、普利昂蛋白、卫星病毒等等得亚病毒因子。医学导航: 病毒病病毒(蛋白质)/分类cutn/syst (hppv/艾滋病, 流感/疱疹/人畜共患)
  • 巩膜巩膜属于眼球纤维膜,在眼球内,约占眼球纤维膜的5/6,为乳白色不透明的纤维膜,起保护眼球内容物和维持眼球形态的作用。巩膜前缘接角膜缘,后方与视神经的硬膜鞘相延续。巩膜与角膜
  • span class=chemf style=white-space:nowrap;Csub15/sub在化学中,十五烷是一种有机化合物,由十五个碳构成的饱和碳链,由于其只由碳和氢组成,因此也是烷烃的一种,其化学式为C15H32。它有4,347个同分异构体。
  • 克洛维一世克洛维一世(法语:Clovis Ier,466年-511年11月27日),法兰克王国奠基人、国王。481年6月26日,法兰克人部落萨利昂法兰克人(英语:Salian Franks)的首领希尔德里克一世逝世,其子克洛维一世
  • 约翰·弗雷德里克·丹尼尔约翰·弗雷德里克·丹尼尔(英语:John Frederic Daniell,1790年3月12日-1845年3月13日),英国化学家、物理学家。他出生在伦敦的一个律师家庭,毕业自牛津大学。曾发明过锌铜电池从而
  • 查理贝尔特二世查理贝尔特二世(Charibert II,606年/610年-632年4月8日),墨洛温王朝的法兰克国王(阿基坦国王,629年10月18日—632年4月8日在位),克洛泰尔二世次子,母亲是克洛泰尔二世的第三任妻子西查
  • 阿拉伯字母U+0600至U+06FF U+0750至U+077F(补充) U+FB50至U+FDCF、U+FDF0至U+FDFF(表现形式A) U+FE70至U+FEFF(表现形式B)阿拉伯语字母,也作天方字母(阿拉伯语:أَبْجَدِيَّة عَر
  • 市值市值指一间(或一组)上市公司在证券市场上的“市场价格总值”的简称。一般会以有关上市公司在相关证券市场上的收市价格作为计算基准,乘以其已发行的股份总数,而得出的市场价格总
  • 黄楠森黄枏森(1921年11月29日-),原名黄述烈,小名南生,后改名黄枏森,又写作黄楠森,四川富顺人,中国马克思主义哲学家、哲学史家和哲学教育家,北京大学哲学系教授。
  • 印第安纳领地印第安纳领地(英语:Indiana Territory),美国历史上的一个合并建制领土,存续时间为1800年7月4日至1816年11月7日。1816年11月7日,该领地南部加入联邦,成为印第安纳州。1800年5月7日,