线性关系

✍ dations ◷ 2024-12-22 20:49:27 #线性

在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 词汇学词汇学(英语:lexicology)是以语言的词汇为研究对象,研究词汇的起源和发展、词的构造、构成及规范,词汇学分为:从广义讲,词汇学还包括词源学、语义学和词典学。
  • 梳霉亚门Asellariales Dimargaritales Harpellales Kickxellales梳霉亚门(Kickxellomycotina)是真菌的一个分支。梳霉亚门的拉丁文名称是由“Harpellomycotina”更正而成,因为“Kickxel
  • 合理药物设计药物设计(英语:Drug design),又称理性药物设计(rational drug design),根据对于靶点(Biological target)的现有知识,去寻找与发明出新型药物的过程。药物设计根据有机小分子物质(如蛋白
  • 人类解剖学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学人体解剖学(英语:anthropotomy或human a
  • NiS硫化镍是一种无机化合物,化学式为NiS。它在自然界中以针镍矿的形式存在。硫化镍可由传统的镍盐与硫化氢反应的方法制备:镍盐溶液和硫化铵溶液反应,也能得到α-NiS,它刚沉淀出来
  • 2003年 塔尔维肖第二十一届冬季世界大学生运动会于2003年1月16日至1月26日在意大利的塔尔维肖举行。这是意大利第四次主办冬季世界大学生运动会。*  主办国家/地区(意大利)
  • 一厢情愿一厢情愿(wishful thinking)是基于美好的想像而非基于理性思考和客观证据形成信念,是一种认知偏差。其形式是:我希望X是对的,因此我相信X是对的。一厢情愿谬误是基于一厢情愿的信念
  • 豆渣豆渣又称豆腐渣是豆制品的一种,是在以大豆制作豆腐或豆浆时过滤后剩下的残渣。价值不高,吃起来口感不是太好,但营养丰富,传统上在东亚地区会被用为食材,亦可加热减少水分后当作面
  • 法斯塔德集中营纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 西雅图邮讯报《西雅图邮讯报》(Seattle Post-Intelligencer)是一份报道美国华盛顿州西雅图及其周边地区的网络报纸。其前身是最早创建于1863年的纸质报纸,是美国华盛顿州历史最悠久的报纸。